[1] RYAN-KEOGH T J, DELIZO L M, SMITH W O Jr, et al. Temporal progression of photosynthetic-strategy in phytoplankton in the ross sea, Antarctica [J]. Journal of Marine Systems, 2017, 166: 87-96. doi: 10.1016/j.jmarsys.2016.08.014
[2] BROWNING T J, AL-HASHEM A A, HOPWOOD M J, et al. Iron regulation of north Atlantic eddy phytoplankton productivity [J]. Geophysical Research Letters, 2021, 48(6): e2020GL091403.
[3] 李永康, 马雪祺, 冯婧娴, 等. 细胞色素P450酶在植物次生代谢产物生物合成中的研究进展[J/OL]. 分子植物育种: 1-8. [2022-06-12].
[4] LI Y W, YAN H, HU T L, et al. Two microporous Fe-based MOFs with multiple active sites for selective gas adsorption [J]. Chemical Communications, 2017, 53(15): 2394-2397. doi: 10.1039/C6CC09923H
[5] QIN S N, FAN H D, JIA L, et al. Molecular structure analysis and mercury adsorption mechanism of iron-based modified biochar [J]. Energy & Fuels, 2022, 36(6): 3184-3200.
[6] DU J, ZHANG L, ALI A, et al. Research on thermal disposal of phytoremediation plant waste: Stability of potentially toxic metals (PTMs) and oxidation resistance of biochars [J]. Process Safety and Environmental Protection, 2019, 125: 260-268. doi: 10.1016/j.psep.2019.03.035
[7] LI H G, WATSON J, ZHANG Y H, et al. Environment-enhancing process for algal wastewater treatment heavy metal control and hydrothermal biofuel production: A critical review [J]. Bioresource Technology, 2020, 298: 122421. doi: 10.1016/j.biortech.2019.122421
[8] LIU K H, ZHANG H C, LIU Y F, et al. Investigation of plant species and their heavy metal accumulation in manganese mine tailings in Pingle Mn mine, China [J]. Environmental Science and Pollution Research International, 2020, 27(16): 19933-19945. doi: 10.1007/s11356-020-08514-9
[9] HAMAD M T M H. Comparative study on the performance of Typha latifolia and Cyperus papyrus on the removal of heavy metals and enteric bacteria from wastewater by surface constructed wetlands [J]. Chemosphere, 2020, 260: 127551. doi: 10.1016/j.chemosphere.2020.127551
[10] XU X Y, MILLS G L. Do constructed wetlands remove metals or increase metal bioavailability? [J]. Journal of Environmental Management, 2018, 218: 245-255.
[11] ZHU H, TAN X, TAN L, et al. Biochar derived from sawdust embedded with molybdenum disulfide for highly selective removal of Pb2+ [J]. ACS Applied Nano Materials, 2018, 1(6): 2689-2698. doi: 10.1021/acsanm.8b00388
[12] DU J, ZHANG L, LIU T, et al. Thermal conversion of a promising phytoremediation plant (Symphytum officinale L. ) into biochar: Dynamic of potentially toxic elements and environmental acceptability assessment of the biochar [J]. Bioresource Technology, 2019, 274: 73-82. doi: 10.1016/j.biortech.2018.11.077
[13] MESQUITA A M, GUIMARÃES I R, de CASTRO G M M, et al. Boron as a promoter in the goethite (α-FeOOH) phase: Organic compound degradation by Fenton reaction [J]. Applied Catalysis B:Environmental, 2016, 192: 286-295. doi: 10.1016/j.apcatb.2016.03.051
[14] OLIVEIRA F R, PATEL A K, JAISI D P, et al. Environmental application of biochar: Current status and perspectives [J]. Bioresource Technology, 2017, 246: 110-122. doi: 10.1016/j.biortech.2017.08.122
[15] WANG S S, GAO B, LI Y C, et al. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests [J]. Journal of Hazardous Materials, 2017, 322: 172-181. doi: 10.1016/j.jhazmat.2016.01.052
[16] KAZEMI SHARIAT PANAHI H, DEHHAGHI M, OK Y S, et al. A comprehensive review of engineered biochar: Production, characteristics, and environmental applications [J]. Journal of Cleaner Production, 2020, 270: 122462. doi: 10.1016/j.jclepro.2020.122462
[17] LIANG J, LI X M, YU Z G, et al. Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(II) and Cd(II) [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5049-5058.
[18] 张睿媛, 王欣, 喻惠玲, 等. 利用植物提取液制备铁基纳米粒子及其在水污染处理中的研究进展 [J]. 环境化学, 2022, 41(2): 683-693. doi: 10.7524/j.issn.0254-6108.2021070203 ZHANG R Y, WANG X, YU H L, et al. Production of iron-based nanoparticles using plant extracts and its application in contaminated water treatment [J]. Environmental Chemistry, 2022, 41(2): 683-693(in Chinese). doi: 10.7524/j.issn.0254-6108.2021070203
[19] PAUL S, KAUSER H, JAIN M S, et al. Biogenic stabilization and heavy metal immobilization during vermicomposting of vegetable waste with biochar amendment [J]. Journal of Hazardous Materials, 2020, 390: 121366. doi: 10.1016/j.jhazmat.2019.121366
[20] WU P, CUI P X, ZHANG Y, et al. Unraveling the molecular mechanisms of Cd sorption onto MnOx-loaded biochar produced from the Mn-hyperaccumulator Phytolacca americana [J]. Journal of Hazardous Materials, 2022, 423: 127157. doi: 10.1016/j.jhazmat.2021.127157
[21] WANG X H, ZHANG P, WANG C P, et al. Metal-rich hyperaccumulator-derived biochar as an efficient persulfate activator: Role of intrinsic metals (Fe, Mn and Zn) in regulating characteristics, performance and reaction mechanisms [J]. Journal of Hazardous Materials, 2022, 424: 127225. doi: 10.1016/j.jhazmat.2021.127225
[22] HUANG Y S, HU H. The interaction of perrhenate and acidic/basic oxygen-containing groups on biochar surface: A DFT study [J]. Chemical Engineering Journal, 2020, 381: 122647. doi: 10.1016/j.cej.2019.122647
[23] 程瑜炜, 凌晨, 王正晓, 等. 聚胺壳聚糖微球对焦磷酸络合废水中镍的高效选择性去除特性与机制 [J]. 环境化学, 2022, 40(8): 2530-2539. CHENG Y W, LING C, WANG Z X, et al. Efficient removal of Ni(Ⅱ) from pyrophosphate-plating wastewater using the polyamine-grafted chitosan beads [J]. Environmental Chemistry, 2022, 40(8): 2530-2539(in Chinese).
[24] WU L P, ZHANG S R, WANG J, et al. Phosphorus retention using iron (II/III) modified biochar in saline-alkaline soils: Adsorption, column and field tests [J]. Environmental Pollution, 2020, 261: 114223. doi: 10.1016/j.envpol.2020.114223
[25] 曾凤美, 孙丰文, 孙恩惠, 等. Fe2O3/PC功能化复合多孔炭材料的制备及除磷机理 [J]. 环境科学学报, 2021, 41(9): 3487-3496. ZENG F M, SUN F W, SUN E H, et al. Fabrication of Fe2O3/PC functionalized biochar composites for phosphate removal from wastewater: Adsorption properties and mechanism [J]. Acta Scientiae Circumstantiae, 2021, 41(9): 3487-3496(in Chinese).
[26] FANG Y F, ZHOU A, YANG W, et al. Complex formation via hydrogen bonding between rhodamine B and montmorillonite in aqueous solution [J]. Scientific Reports, 2018, 8: 229. doi: 10.1038/s41598-017-18057-8
[27] 徐艳, 杨宏国, 牛慧斌, 等. 磁性纳米颗粒Fe3O4的醇改性制备机理及应用 [J]. 高等学校化学学报, 2021, 42(8): 2564-2573. XU Y, YANG H G, NIU H B, et al. Preparation mechanism and application of alcohol-modified Fe3O4 magnetic nanoparticles [J]. Chemical Journal of Chinese Universities, 2021, 42(8): 2564-2573(in Chinese).
[28] MOHSEN E, JABER J, MEHDI M A, et al. Synthesis and characterization of Fe3O4@SiO2–polymer-imid–Pd magnetic porous nanospheres and their application as a novel recyclable catalyst for Sonogashira–Hagihara coupling reactions [J]. Journal of the Iranian Chemical Society, 2014, 11(2): 499-510. doi: 10.1007/s13738-013-0323-4
[29] ZHANG H, XUE G, CHEN H, et al. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment [J]. Chemosphere, 2018, 191: 64-71. doi: 10.1016/j.chemosphere.2017.10.026
[30] ZHANG J J, SHAO J G, JIN Q Z, et al. Effect of deashing on activation process and lead adsorption capacities of sludge-based biochar [J]. Science of the Total Environment, 2020, 716: 137016. doi: 10.1016/j.scitotenv.2020.137016
[31] LI C Y, FU M, WANG Y, et al. In situ synthesis of Co2P-decorated red phosphorus nanosheets for efficient photocatalytic H2 evolution [J]. Catalysis Science & Technology, 2020, 10(7): 2221-2230.
[32] DOU S, KE X X, SHAO Z D, et al. Fish scale-based biochar with defined pore size and ultrahigh specific surface area for highly efficient adsorption of ciprofloxacin [J]. Chemosphere, 2022, 287: 131962. doi: 10.1016/j.chemosphere.2021.131962
[33] POCHAPSKI D J, CARVALHO dos SANTOS C, LEITE G W, et al. Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: Effects of experimental conditions and electrokinetic models on the interpretation of results [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2021, 37(45): 13379-13389. doi: 10.1021/acs.langmuir.1c02056
[34] BISWAS A, PRATHIBHA C. Nanocomposite of ceria and trititanate nanotubes as an efficient defluoridating material for real-time groundwater: Synthesis, regeneration, and leached metal risk assessment [J]. ACS Omega, 2021, 6(47): 31751-31764. doi: 10.1021/acsomega.1c04424