[1] LIU Y, WEI D, XU W, et al. Nitrogen removal in a combined aerobic granular sludge and solid-phase biological denitrification system: system evaluation and community structure[J]. Bioresource technology, 2019, 288: 121504. doi: 10.1016/j.biortech.2019.121504
[2] 杨惠兰, 张丹, 兰书焕, 等. 聚己内酯复合固体碳源的制备及其深度脱氮性能研究[J]. 环境科学学报, 2022, 42(5): 263-273. doi: 10.13671/j.hjkxxb.2021.0415
[3] QI W, TAHERZADEH M J, RUAN Y, et al. Denitrification performance and microbial communities of solid-phase denitrifying reactors using poly (butylene succinate)/bamboo powder composite[J]. Bioresource Technology, 2020, 305: 123033. doi: 10.1016/j.biortech.2020.123033
[4] 唐丹琦, 王娟, 郑天龙, 等. 聚乳酸/淀粉固体缓释碳源生物反硝化研究[J]. 环境科学, 2014, 35(6): 2236-2240. doi: 10.13227/j.hjkx.2014.06.027
[5] WANG J, CHU L. Biological nitrate removal from water and wastewater by solid-phase denitrification process[J]. Biotechnology Advances, 2016, 34(6): 1103-1112. doi: 10.1016/j.biotechadv.2016.07.001
[6] YU S, DONG X, ZHAO P, et al. Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose[J]. Nature Communications, 2022, 13(1): 1-10. doi: 10.1038/s41467-021-27699-2
[7] 赵文莉. 复合碳源填料深度反硝化脱氮特性研究[D]. 北京: 北京工业大学, 2015.
[8] 凌宇. 高效缓释碳源填料用于污水厂尾水深度脱氮的研究[D]. 北京: 中国环境科学研究院, 2021.
[9] XIONG R, YU X, YU L, et al. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal WWTP[J]. Chemosphere, 2019, 235: 434-439. doi: 10.1016/j.chemosphere.2019.06.198
[10] YANG Z, SUN H, ZHOU Q, et al. Nitrogen removal performance in pilot-scale solid-phase denitrification systems using novel biodegradable blends for treatment of waste water treatment plants effluent[J]. Bioresource Technology, 2020, 305: 122994. doi: 10.1016/j.biortech.2020.122994
[11] 王润众, 郝瑞霞, 赵文莉. 新型缓释碳源的制备及其性能[J]. 环境工程学报, 2016, 10(1): 81-87. doi: 10.12030/j.cjee.20160113
[12] 闫续, 许柯, 耿金菊等. 两种释碳材料的制备及其性能研究[J]. 中国环境科学, 2012, 32(11): 1984-1990. doi: 10.3969/j.issn.1000-6923.2012.11.009
[13] WATANABE K, MANEFIELD M, LEE M, et al. Electron shuttles in biotechnology[J]. Current Opinion in Biotechnology, 2009, 20(6): 633-641. doi: 10.1016/j.copbio.2009.09.006
[14] LIU H, CHEN Z, GUAN Y, et al. Role and application of iron in water treatment for nitrogen removal: A review[J]. Chemosphere, 2018, 204: 51-62. doi: 10.1016/j.chemosphere.2018.04.019
[15] 李斌, 郝瑞霞, 赵文莉. 玉米芯与海绵铁复合填料的反硝化脱氮特性[J]. 中国给水排水, 2014, 30(7): 31-34. doi: 10.19853/j.zgjsps.1000-4602.2014.07.008
[16] JIA W, WANG Q, ZHANG J, et al. Nutrients removal and nitrous oxide emission during simultaneous nitrification, denitrification, and phosphorusremoval process: Effect of iron[J]. Environmental Science and Pollution Research, 2016, 23: 15657-15664. doi: 10.1007/s11356-016-6758-2
[17] 国家环境保护总局. 水和废水监测分析方法[J]. 4版. 北京:中国环境科学出版社, 2002: 210-284.
[18] 凌宇, 闫国凯, 王海燕, 等. 6种农业废弃物初期碳源及溶解性有机物释放机制[J]. 环境科学, 2021, 42(5): 2422-2431.
[19] WANG Z P, ZHANG T. Characterization of soluble microbial products (SMP) under stressful conditions[J]. Water Research, 2010, 44(18): 5499-5509. doi: 10.1016/j.watres.2010.06.067
[20] 蔡华玲, 宁寻安, 陈晓晖, 等. 印染外排废水中溶解性有机质的荧光特性[J]. 环境化学, 2021, 40(5): 1592-1601. doi: 10.7524/j.issn.0254-6108.2020010402
[21] 赵文莉, 郝瑞霞, 李斌, 等. 预处理方法对玉米芯作为反硝化固体碳源的影响[J]. 环境科学, 2014, 35(3): 987-994.
[22] 范天凤, 董伟羊, 赵转军, 等. 改性枸杞枝作为反硝化脱氮碳源的研究[J]. 环境科学学报, 2021, 41(9): 3513-3520. doi: 10.13671/j.hjkxxb.2021.0093
[23] 商振达, 谭占坤, 李家奎, 等. 西藏地区荞麦与玉米混合青贮对发酵品质和微生物多样性的影响[J]. 草业学报, 2019, 28(4): 95-105. doi: 10.11686/cyxb2018676
[24] LV D, ZHOU X, ZHOU J, et al. Design and characterization of sulfide-modified nanoscale zerovalent iron for cadmium (II) removal from aqueous solutions[J]. Applied Surface Science, 2018, 442: 114-123. doi: 10.1016/j.apsusc.2018.02.085
[25] RITGER P L, PEPPAS N A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices[J]. Journal of controlled release, 1987, 5(1): 37-42. doi: 10.1016/0168-3659(87)90035-6
[26] 张雯, 张亚平, 尹琳, 等. 以10种农业废弃物为基料的地下水反硝化碳源属性的实验研究[J]. 环境科学学报, 2017, 37(5): 1787-1797.
[27] 陈诗雨, 李燕, 李爱民. 溶解性有机物研究中三维荧光光谱分析的应用[J]. 环境科学与技术, 2015, 38(5): 64-68+73.
[28] 周圆, 李怀波, 郑凯凯, 等. 新型组合工艺处理印染废水中试效能及微生物菌群分析[J]. 环境工程学报, 2020, 14(11): 3030-3041. doi: 10.12030/j.cjee.201912118
[29] MENG F, ZHOU Z, NI B J, et al. Characterization of the sizefractionated biomacromolecules: tracking their role and fate in a membrane bioreactor[J]. Water Research, 2011, 45(15): 4661-4671. doi: 10.1016/j.watres.2011.06.026
[30] LEE M H, OSBUM C L, SHIN K H, et al. New insight into the applicability of spectroscopic indices for dissolved organic matter(DOM)source discrimination in aquatic systems affected by biogeochemical processes[J]. Water Research, 2018, 147: 164-176. doi: 10.1016/j.watres.2018.09.048
[31] SHEN Z, WANG J. Biological denitrification using cross-linked starch/PCL blends as solid carbon source and biofilm carrier[J]. Bioresource technology, 2011, 102(19): 8835-8838. doi: 10.1016/j.biortech.2011.06.090
[32] 宋亚男, 陆圆, 陆勇泽, 等. 电流对DF-BER反硝化和有机物转化的影响[J]. 中国环境科学, 2020, 40(7): 2880-2887. doi: 10.3969/j.issn.1000-6923.2020.07.011
[33] 彭锦玉, 张克峰, 王全勇, 等. 以4种天然植物材料为碳源的固相反硝化研究[J]. 工业水处理, 2021, 41(10): 104-108. doi: 10.19965/j.cnki.iwt.2021-0087
[34] 李斌, 郝瑞霞. 固体纤维素类废物作为反硝化碳源滤料的比选[J]. 环境科学, 2013, 34(4): 1428-1434. doi: 10.13227/j.hjkx.2013.04.058