[1] ZENG L Y, GONG J Y, DAN J F, et al. Novel visible light enhanced Pyrite-Fenton system toward ultrarapid oxidation of p-nitrophenol: Catalytic activity, characterization and mechanism[J]. Chemosphere, 2019, 228: 232-240. doi: 10.1016/j.chemosphere.2019.04.103
[2] 乔雯雯, 王宇晖, 宋新山. 黄铁矿强化人工湿地反硝化处理含氮废水的研究[J]. 工业水处理, 2021, 41(4): 77-83.
[3] 胡俊松, 李睿华, 孙茜茜, 等. 天然黄铁矿对草甘膦的吸附性能[J]. 环境工程学报, 2015, 9(11): 5463-5469. doi: 10.12030/j.cjee.20151152
[4] LIU W, WANG Y Y, AI Z H, et al. Hydrothermal synthesis of FeS2 as a high-efficiency fenton reagent to degrade alachlor via superoxide-mediated Fe(II)/Fe(III) cycle[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28534-28544.
[5] 李海东, 田世洪, 江卫兵, 等. 粤东北桃源铀矿床黄铁矿地球化学特征及其地质意义[J]. 地质论评, 2021, 67(4): 1157-1167.
[6] 陈上锋. 黄铁矿在环境净化方面的应用[J]. 中山大学研究生学刊(自然科学医学版), 2014, 35(2): 22-36.
[7] 王汉林, 陈天虎, 刘海波. 硫化鲕状赤铁矿非均相Fenton法降解四环素, 中国矿物岩石地球化学学会第17届学术年会, 中国浙江杭州, F, 2019 C].
[8] GOLSHEIKH A M, HUANG N M, LIM H N, et al. One-pot hydrothermal synthesis and characterization of FeS2 (pyrite)/graphene nanocomposite[J]. Chemical Engineering Journal, 2013, 218: 276-284. doi: 10.1016/j.cej.2012.09.082
[9] PUTHUSSERY J, SEEFELD S, BERRY N, et al. Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics[J]. Journal of the American Chemical Society, 2011, 133(4): 716-719. doi: 10.1021/ja1096368
[10] WANG J L, ZHUAN R. Degradation of antibiotics by advanced oxidation processes: An overview[J]. Science of the Total Environment, 2020, 701: 135023. doi: 10.1016/j.scitotenv.2019.135023
[11] SCHOONEN M A A, HARRINGTON A D, LAFFERS R, et al. Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen[J]. Geochimica Cosmochimica Acta, 2010, 74(17): 4971-4987. doi: 10.1016/j.gca.2010.05.028
[12] HE D, SUN Y, XIN L, et al. Aqueous tetracycline degradation by non-thermal plasma combined with nano-TiO2[J]. Chemical Engineering Journal, 2014, 258: 18-25. doi: 10.1016/j.cej.2014.07.089
[13] DIAO Z H, LIU J J, HU Y X, et al. Comparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: Reactivity, stability, products and mechanism[J]. Separation Purification Technology, 2017, 184: 374-383. doi: 10.1016/j.seppur.2017.05.016
[14] ZHANG Q, PENG Q, SHU X, et al. Spectroscopic analysis of tylosin adsorption on extracellular DNA reveals its interaction mechanism[J]. Colloids and Surfaces B: 2019, 183: 110431.
[15] GUO H, LI Z, LIN S, et al. Multi-catalysis induced by pulsed discharge plasma coupled with graphene-Fe3O4 nanocomposites for efficient removal of ofloxacin in water: Mechanism, degradation pathway and potential toxicity[J]. Chemosphere, 2021, 265: 129089. doi: 10.1016/j.chemosphere.2020.129089
[16] WANG B W, WANG C, YAO S M, et al. Plasma-catalytic degradation of tetracycline hydrochloride over Mn/gamma-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science & Technology, 2019, 21(6): 132-139.
[17] JIANG B, ZHENG J T, QIU S, et al. Review on electrical discharge plasma technology for wastewater remediation[J]. Chemical Engineering Journal, 2014, 236: 348-368. doi: 10.1016/j.cej.2013.09.090
[18] 艾翠玲, 周丹丹, 张嵘嵘, 等. β-In2S3的制备及其太阳光下降解土霉素[J]. 环境科学, 2015, 36(8): 2911-2917.
[19] FERRAG-SIAGH F, FOURCADE F, SOUTREL I, et al. Electro-Fenton pretreatment for the improvement of tylosin biodegradability[J]. Environmental Science and Pollution Research, 2014, 21(14): 8534-8542. doi: 10.1007/s11356-014-2771-5
[20] CHANG Z S, WANG C, ZHANG G J. Progress in degradation of volatile organic compounds based on low-temperature plasma technology[J]. Plasma Processes and Polymers, 2020, 17(4): 201900131.
[21] ZHU F, CHEN J X, MA J F, et al. Degradation of organic pollutants by ZnMn2O4/organic acid system: Identification of active species[J]. Materials Letters, 2021, 293: 129725. doi: 10.1016/j.matlet.2021.129725
[22] SHEN C S, WU S S, CHEN H, et al. Phthalate degradation by glow discharge plasma enhanced with pyrite in aqueous solution[J]. Water Science and Technology, 2016, 74(6): 1365-1375. doi: 10.2166/wst.2016.316
[23] CHEN S, WANG H, SHI M, et al. Deep oxidation of NO by a hybrid system of plasma-N-type semiconductors: High-Energy electron-activated "Pseudo Photocatalysis" behavior[J]. Environmental Science & Technology, 2018, 52(15): 8568-8577.
[24] CUI Y, HUANG J, FU X, et al. Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors[J]. Catalysis Science & Technology, 2012, 2(7): 1396-1402.
[25] HARLING A M, GLOVER D J, WHITEHEAD J C, et al. Novel method for enhancing the destruction of environmental pollutants by the combination of multiple plasma discharges[J]. Environmental Science & Technol, 2008, 42(12): 4546-4550.
[26] LIU Y, SUN B, WANG L, et al. Characteristics of light emission and radicals formed by contact glow discharge electrolysis of an aqueous solution[J]. Plasma Chemistry and Plasma Processing, 2012, 32(2): 359-368. doi: 10.1007/s11090-011-9347-7
[27] SUN B, KUNITOMO S, IGARASHI C. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water[J]. Journal of Physics D:Applied Physics, 2006, 39(17): 3814-3820. doi: 10.1088/0022-3727/39/17/016
[28] HU D, COATS J R. Aerobic degradation and photolysis of tylosin in water and soil[J]. Environmental Toxicology and Chemistry, 2007, 26(5): 884-889. doi: 10.1897/06-197R.1
[29] VON EYKEN A, BAYEN S. Non-targeted study of the thermal degradation of tylosin in honey, water and water: honey mixtures[J]. Food Additives and Contaminants:Part A, 2020, 37(3): 421-437. doi: 10.1080/19440049.2019.1704442
[30] ZHANG G, HUANG G, YANG C, et al. Efficient photoelectrocatalytic degradation of tylosin on TiO2 nanotube arrays with tunable phosphorus dopants[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104742. doi: 10.1016/j.jece.2020.104742
[31] KOSJEK T, HEATH E. Applications of mass spectrometry to identifying pharmaceutical transformation products in water treatment[J]. Trends in Analytical Chemistry, 2008, 27(10): 807-820. doi: 10.1016/j.trac.2008.08.014