[1] |
LI Q, YUWEN C S, CHENG X R, et al. Responses of microbial capacity and community on the performance of mesophilic co-digestion of food waste and waste activated sludge in a high-frequency feeding CSTR[J]. Bioresource Technology, 2018, 260: 85-94. doi: 10.1016/j.biortech.2018.03.087
|
[2] |
OGUNMOROTI A, LIU M, LI M Y, et al. Unraveling the environmental impact of current and future food waste and its management in Chinese provinces[J]. Resources, Environment and Sustainability, 2022, 9: 100064. doi: 10.1016/j.resenv.2022.100064
|
[3] |
XIAO B Y, QIN Y, ZHANG W Z, et al. Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance[J]. Bioresource Technology, 2018, 249: 826-834. doi: 10.1016/j.biortech.2017.10.084
|
[4] |
ZHANG J X, LOH K C, LI W L, et al. Three-stage anaerobic digester for food waste[J]. Applied Energy, 2017, 194: 287-295. doi: 10.1016/j.apenergy.2016.10.116
|
[5] |
ZHANG C S, SU H J, BAEYENS J, et al. Reviewing the anaerobic digestion of food waste for biogas production[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 383-392. doi: 10.1016/j.rser.2014.05.038
|
[6] |
NGHIEM L D, KOCH K, DAVID B, et al. Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 354-362. doi: 10.1016/j.rser.2017.01.062
|
[7] |
GOU C L, YANG Z H, HUANG J, et al. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste[J]. Chemosphere, 2014, 105: 146-151. doi: 10.1016/j.chemosphere.2014.01.018
|
[8] |
LI Q, LI H, WANG G J, et al. Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system, looking in particular at stability and efficiency[J]. Bioresource Technology, 2017, 237: 231-239. doi: 10.1016/j.biortech.2017.02.045
|
[9] |
YEONGMI J, SLAWOMIR W H, CHANHYUK P. Treatment of food waste recycling wastewater using anaerobic ceramic membrane bioreactor for biogas production in mainstream treatment process of domestic wastewater[J]. Water Research, 2017, 123: 86-95. doi: 10.1016/j.watres.2017.06.049
|
[10] |
袁宏林, 韩宇乐, 邢保山, 等. 膜基材对连续流动态膜厌氧混合发酵系统的影响[J]. 环境科学学报, 2019, 39(12): 4114-4121. doi: 10.13671/j.hjkxxb.2019.0221
|
[11] |
李浩, 黄慧群. 餐厨垃圾与污泥厌氧发酵动力学特性分析[J]. 环境工程, 2018, 36(7): 107-112. doi: 10.13205/j.hjgc.201807022
|
[12] |
XING B S, HAN Y L, CAO S F, et al. Effects of long-term acclimatization on the optimum substrate mixture ratio and substrate to inoculum ratio in anaerobic codigestion of food waste and cow manure[J]. Bioresource Technology, 2020, 317: 123994. doi: 10.1016/j.biortech.2020.123994
|
[13] |
LI L, HE Q M, WEI Y M, et al. Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste[J]. Bioresource Technology, 2014, 171: 491-494. doi: 10.1016/j.biortech.2014.08.089
|
[14] |
李浩, 李倩, 王高骏, 等. 不同条件下厨余与污泥共发酵效率及能耗分析[J]. 环境工程学报, 2017, 11(7): 4305-4312. doi: 10.12030/j.cjee.201605057
|
[15] |
袁宏林, 马静, 邢保山, 等. 污泥停留时间对餐厨垃圾与剩余污泥中温厌氧混合发酵系统的影响[J]. 环境科学, 2019, 40(2): 994-1002. doi: 10.13227/j.hjkx.201808114
|
[16] |
APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed[Z]. 2005.
|
[17] |
LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the Folin phenol reagent[J]. The Journal of Biological Chemistry, 1951, 193(1): 265-275. doi: 10.1016/S0021-9258(19)52451-6
|
[18] |
DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorometric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017
|
[19] |
LAY J J, LI Y Y, NOIKE T. Interaction between homoacetogens and methanogens in lake sediments[J]. Journal of Fermentation and Bioengineering, 1998, 86(5): 467-471. doi: 10.1016/S0922-338X(98)80153-0
|
[20] |
张念瑞, 李倩, 许曼娟, 等. 进料频率对餐厨垃圾与剩余污泥中温共发酵系统稳定性的影响[J]. 环境工程学报, 2018, 12(2): 638-644. doi: 10.12030/j.cjee.201707224
|
[21] |
GUNASEELAN V N. Biochemical methane potential of fruits and vegetable solid waste feedstocks[J]. Biomass Bioenergy, 2004, 26(4): 389-399. doi: 10.1016/j.biombioe.2003.08.006
|
[22] |
YANG W W, YOUNG S, MUNOZ A, et al. Dynamic modeling of a full-scale anaerobic mesophilic digester start-up process for the treatment of primary sludge[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103091. doi: 10.1016/j.jece.2019.103091
|
[23] |
SANCHEZ E, BORJA R, TRAVIESO L, et al. Effect of organic loading rate on the stability, operational parameters and performance of a secondary upflow anaerobic sludge bed reactor treating piggery waste.[J]. Bioresource Technology, 2005, 96(3): 335-344. doi: 10.1016/j.biortech.2004.04.003
|
[24] |
MAO C L, XI J C, FENG Y Z, et al. Biogas production and synergistic correlations of systematic parameters during batch anaerobic digestion of corn straw[J]. Renewable Energy, 2019, 132: 1271-1279. doi: 10.1016/j.renene.2018.09.009
|