[1] |
BOONE J S, VIGO C, BOONE T, et al. Per- and polyfluoroalkyl substances in source and treated drinking waters of the United States[J]. Science of the Total Environment, 2019, 653: 359-369. doi: 10.1016/j.scitotenv.2018.10.245
|
[2] |
LIU S, LU Y, XIE S, et al. Exploring the fate, transport and risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia model[J]. Environment International, 2015, 85: 15-26. doi: 10.1016/j.envint.2015.08.007
|
[3] |
任肖敏, 张连营, 郭良宏. 多溴联苯醚和全氟烷基酸的分子毒理机制研究[J]. 环境化学, 2014, 33(10): 1662-1671. doi: 10.7524/j.issn.0254-6108.2014.10.012
|
[4] |
LYU X, LIU Y, CHEN C, et al. Enhanced use of foam fractionation in the photodegradation of perfluorooctane sulfonate (PFOS)[J]. Separation and Purification Technology, 2020, 253: 117488. doi: 10.1016/j.seppur.2020.117488
|
[5] |
GUO W, HUO S, FENG J, et al. Adsorption of perfluorooctane sulfonate (PFOS) on corn straw-derived biochar prepared at different pyrolytic temperatures[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 265-271. doi: 10.1016/j.jtice.2017.06.013
|
[6] |
ZHANG D Q, ZHANG W L, LIANG Y N. Adsorption of perfluoroalkyl and polyfluoroalkyl substances (PFASs) from aqueous solution: A review[J]. Science of the Total Environment, 2019, 694: 133606. doi: 10.1016/j.scitotenv.2019.133606
|
[7] |
HU Z, SONG X, WEI C, et al. Behavior and mechanisms for sorptive removal of perfluorooctane sulfonate by layered double hydroxides[J]. Chemosphere, 2017, 187: 196-205. doi: 10.1016/j.chemosphere.2017.08.082
|
[8] |
MATAMOROS V, GARCIA J, BAYONA J M. Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent[J]. Water Research, 2008, 42(3): 653-660. doi: 10.1016/j.watres.2007.08.016
|
[9] |
YI X, TRAN N H, YIN T, et al. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system[J]. Water Research, 2017, 121: 46-60. doi: 10.1016/j.watres.2017.05.008
|
[10] |
CHEN Y, LO S, LEE Y. Distribution and fate of perfluorinated compounds (PFCs) in a pilot constructed wetland[J]. Desalination and Water Treatment, 2012, 37(1-3): 178-184. doi: 10.1080/19443994.2012.661270
|
[11] |
王建军, 李田, 张颖. 给水厂污泥改良生物滞留填料除磷效果的研究[J]. 环境科学. 2014, 35(12): 4642-4647.
|
[12] |
赵亚乾, 杨永哲, Akintunde Babatunde, 等. 以给水厂铝污泥为基质的人工湿地研发概述[J]. 中国给水排水, 2015, 31(11): 124-130. doi: 10.19853/j.zgjsps.1000-4602.2015.11.031
|
[13] |
奚道国, 张瑞斌, 周乃, 等. 铝污泥复合填料特性及在人工湿地中的应用[J]. 环境工程技术学报, 2019, 9(5): 552-558. doi: 10.12153/j.issn.1674-991X.2019.05.070
|
[14] |
张瑞斌, 刘清泉, 陈露莹, 等. 4种水生植物对复合污染水体中营养盐和全氟烷基酸的去除效果[J]. 环境工程学报, 2022, 16(2): 462-470. doi: 10.12030/j.cjee.202111053
|
[15] |
WANG P. , LU Y, WANG T, et al. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities[J]. Environmental Pollution, 2014, 190: 115-122. doi: 10.1016/j.envpol.2014.03.030
|
[16] |
卢少勇, 金相灿, 余刚. 人工湿地的氮去除机理[J]. 生态学报, 2006(8): 2670-2677. doi: 10.3321/j.issn:1000-0933.2006.08.033
|
[17] |
LI P, ZHI D, ZHANG X, et al. Research progress on the removal of hazardous perfluorochemicals: A review[J]. Journal of Environmental Management, 2019, 250: 109488. doi: 10.1016/j.jenvman.2019.109488
|
[18] |
BAO Y, LI B, XIE S, et al. Vertical profiles of microbial communities in perfluoroalkyl substance-contaminated soils[J]. Annals of Microbiology, 2018, 68(6): 399-408. doi: 10.1007/s13213-018-1346-y
|
[19] |
CHEN H, ZOU M, ZHOU Y, et al. Monitoring the nitrous oxide emissions and biological nutrient removal from wastewater treatment: Impact of perfluorooctanoic acid[J]. Journal of Hazardous Materials, 2021, 402: 123469. doi: 10.1016/j.jhazmat.2020.123469
|
[20] |
YANG G, ZHANG N, YANG J, et al. Interaction between perfluorooctanoic acid and aerobic granular sludge[J]. Water Research, 2020, 169: 115249. doi: 10.1016/j.watres.2019.115249
|
[21] |
LI J, YANG X, WANG Z, et al. Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water[J]. Bioresource Technology, 2015, 179: 1-7. doi: 10.1016/j.biortech.2014.11.053
|
[22] |
KEIZER-VLEK H E, VERDONSCHOT P F M, VERDONSCHOT R C M, et al. The contribution of plant uptake to nutrient removal by floating treatment wetlands[J]. Ecological Engineering, 2014, 73: 684-690. doi: 10.1016/j.ecoleng.2014.09.081
|
[23] |
KYAMBADDE J, KANSIIME F, GUMAELIUS L, et al. A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate[J]. Water Research (Oxford), 2004, 38(2): 475-485. doi: 10.1016/j.watres.2003.10.008
|
[24] |
BABATUNDE A O, ZHAO Y Q. Forms, patterns and extractability of phosphorus retained in alum sludge used as substrate in laboratory-scale constructed wetland systems[J]. Chemical Engineering Journal (Lausanne, Switzerland:1996), 2009, 152(1): 8-13.
|
[25] |
巨龙, 耿雅妮, 任雪盈, 等. 铝污泥对磷的吸附动力学机制及其影响因素[J]. 江西农业学报. 2017, 29(11): 87-90.
|
[26] |
ZHANG D, ZHANG W, LIANG Y. Distribution of eight perfluoroalkyl acids in plant-soil-water systems and their effect on the soil microbial community[J]. Science of the Total Environment, 2019, 697: 134146. doi: 10.1016/j.scitotenv.2019.134146
|
[27] |
赵晓红, 杨雨萌, 王文科, 等. 壳聚糖改性铝污泥对铜绿微囊藻的絮凝去除[J]. 中国环境科学, 2021, 41(10): 4677-4685. doi: 10.3969/j.issn.1000-6923.2021.10.024
|
[28] |
QIAO W, XIE Z, ZHANG Y, et al. Perfluoroalkyl substances (PFASs) influence the structure and function of soil bacterial community: Greenhouse experiment[J]. Science of the Total Environment, 2018, 642: 1118-1126. doi: 10.1016/j.scitotenv.2018.06.113
|
[29] |
OCHOA-HERRERA V, SIERRA-ALVAREZ R. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge[J]. Chemosphere, 2008, 72(10): 1588-1593. doi: 10.1016/j.chemosphere.2008.04.029
|
[30] |
赵晓红, 赵亚乾, 王文科, 等. 人工湿地系统以铝污泥为基质的几个关键问题[J]. 中国给水排水, 2015, 31(11): 131-136. doi: 10.19853/j.zgjsps.1000-4602.2015.11.033
|