[1] |
孟庆玲, 欧晓霞, 张梦然, 等. 抗生素污染废水处理技术研究进展[J]. 绿色科技, 2021, 23(2): 81-83. doi: 10.3969/j.issn.1674-9944.2021.02.029
|
[2] |
齐亚兵, 张思敬, 孟晓荣, 等. 抗生素废水处理技术现状及研究进展[J]. 应用化工, 2021, 50(9): 2587-2593. doi: 10.3969/j.issn.1671-3206.2021.09.054
|
[3] |
CARVALHO I T, SANTOS L. Antibiotics in the aquatic environments: A review of the European scenario[J]. Environment International, 2016, 94: 736-757. doi: 10.1016/j.envint.2016.06.025
|
[4] |
赵富强, 高会, 张克玉, 等. 中国典型河流水域抗生素的赋存状况及风险评估研究[J]. 环境污染与防治, 2021, 43(1): 94-102. doi: 10.15985/j.cnki.1001-3865.2021.01.018
|
[5] |
ZHANG J J, LIU X J, ZHU Y T, et al. Antibiotic exposure across three generations from Chinese families and cumulative health risk[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110237. doi: 10.1016/j.ecoenv.2020.110237
|
[6] |
QIU S Y, WANG Y, WAN J Q, et al. Enhanced electro-Fenton catalytic performance with in-situ grown Ce/Fe@NPC-GF as self-standing cathode: Fabrication, influence factors and mechanism[J]. Chemosphere, 2021, 273: 130269. doi: 10.1016/j.chemosphere.2021.130269
|
[7] |
DU X, FU W, SU P, et al. Trace FeCu@PC derived from MOFs for ultraefficient heterogeneous electro-Fenton process: Enhanced electron transfer and bimetallic synergy[J]. ACS ES& T Engineering, 2021, 1(9): 1311-1322.
|
[8] |
CHENG S, ZHENG H, SHEN C, et al. Hierarchical iron phosphides composite confined in ultrathin carbon layer as effective heterogeneous electro-Fenton catalyst with prominent stability and catalytic activity[J]. Advanced Functional Materials, 2021, 31(48): 2106311. doi: 10.1002/adfm.202106311
|
[9] |
王奇, 潘家荣, 梅朋森, 等. 电Fenton及光电Fenton法废水处理技术研究进展[J]. 三峡大学学报(自然科学版), 2008(2): 89-94.
|
[10] |
LIU X C, HE C S, SHEN Z Y, et al. Mechanistic study of Fe(III) chelate reduction in a neutral electro-Fenton process[J]. Applied Catalysis B:Environmental, 2020, 278: 119347. doi: 10.1016/j.apcatb.2020.119347
|
[11] |
WANG Y Z, ZHANG H M, LI B K, et al. γ-FeOOH graphene polyacrylamide carbonized aerogel as air-cathode in electro-Fenton process for enhanced degradation of sulfamethoxazole[J]. Chemical Engineering Journal, 2019, 359: 914-923. doi: 10.1016/j.cej.2018.11.096
|
[12] |
GANIYU S O, ZHOU M H, MARTÍNEZ-HUITLE C A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment[J]. Applied Catalysis B:Environmental, 2018, 235: 103-129. doi: 10.1016/j.apcatb.2018.04.044
|
[13] |
ZHANG J J, QIU S, FENG H P, et al. Efficient degradation of tetracycline using core–shell Fe@Fe2O3-CeO2 composite as novel heterogeneous electro-Fenton catalyst[J]. Chemical Engineering Journal, 2022, 428: 131403. doi: 10.1016/j.cej.2021.131403
|
[14] |
ZHAO K, QUAN X, CHEN S, et al. Enhanced electro-Fenton performance by fluorine-doped porous carbon for removal of organic pollutants in wastewater[J]. Chemical Engineering Journal, 2018, 354: 606-615. doi: 10.1016/j.cej.2018.08.051
|
[15] |
YE Z H, PADILLA J A, XURIGUERA E, et al. A highly stable metal–organic framework-engineered FeS2/C nanocatalyst for heterogeneous electro-Fenton treatment: Validation in wastewater at mild pH[J]. Environmental Science & Technology, 2020, 54(7): 4664-4674.
|
[16] |
YANG T Y, YU D Y, WANG D, et al. Accelerating Fe(Ⅲ)/Fe(Ⅱ) cycle via Fe(Ⅱ) substitution for enhancing Fenton-like performance of Fe-MOFs[J]. Applied Catalysis B:Environmental, 2021, 286: 119859. doi: 10.1016/j.apcatb.2020.119859
|
[17] |
YIN Y, REN Y, LU J H, et al. The nature and catalytic reactivity of UiO-66 supported Fe3O4 nanoparticles provide new insights into Fe-Zr dual active centers in Fenton-like reactions[J]. Applied Catalysis B:Environmental, 2021, 286: 119943. doi: 10.1016/j.apcatb.2021.119943
|
[18] |
YUAN R R, QIU J L, YUE C L, et al. Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification[J]. Chemical Engineering Journal, 2020, 401: 126020. doi: 10.1016/j.cej.2020.126020
|
[19] |
ZHOU L, LI N, OWENS G, et al. Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8[J]. Chemical Engineering Journal, 2019, 362: 628-637. doi: 10.1016/j.cej.2019.01.068
|
[20] |
LI H X, ZHANG J, YAO Y Z, et al. Nanoporous bimetallic metal-organic framework (FeCo-BDC) as a novel catalyst for efficient removal of organic contaminants[J]. Environmental Pollution, 2019, 255: 113337. doi: 10.1016/j.envpol.2019.113337
|
[21] |
LI H X, YANG Z X, LU S, et al. Nano-porous bimetallic CuCo-MOF-74 with coordinatively unsaturated metal sites for peroxymonosulfate activation to eliminate organic pollutants: Performance and mechanism[J]. Chemosphere, 2021, 273: 129643. doi: 10.1016/j.chemosphere.2021.129643
|
[22] |
DU J, LI F, SUN L C. Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction[J]. Chemical Society Reviews, 2021, 50(4): 2663-2695. doi: 10.1039/D0CS01191F
|
[23] |
SUN L, CAMPBELL M G, DINCĂ M. Electrically conductive porous metal–organic frameworks[J]. Angewandte Chemie International Edition, 2016, 55(11): 3566-3579. doi: 10.1002/anie.201506219
|
[24] |
CHENG S, SHEN C, ZHENG H, et al. OCNTs encapsulating Fe-Co PBA as efficient chainmail-like electrocatalyst for enhanced heterogeneous electro-Fenton reaction[J]. Applied Catalysis B:Environmental, 2020, 269: 118785. doi: 10.1016/j.apcatb.2020.118785
|
[25] |
MENG J S, NIU C J, XU L H, et al. General oriented formation of carbon nanotubes from metal–organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(24): 8212-8221. doi: 10.1021/jacs.7b01942
|
[26] |
陆平. 草酸钛钾分光光度法测定Fenton高级氧化系统中的过氧化氢[J]. 建筑工程技术与设计, 2014(8): 582-582,517. doi: 10.3969/j.issn.2095-6630.2014.08.553
|
[27] |
LI Y S, FENG Y, LI L, et al. PBA@PPy derived N-doped mesoporous carbon nanocages embedded with FeCo alloy nanoparticles for enhanced performance of oxygen reduction reaction[J]. Journal of Alloys and Compounds, 2020, 823: 153892. doi: 10.1016/j.jallcom.2020.153892
|
[28] |
AGO H, KUGLER T, CACIALLI F, et al. Work functions and surface functional groups of multiwall carbon nanotubes[J]. The Journal of Physical Chemistry B, 1999, 103(38): 8116-8121. doi: 10.1021/jp991659y
|
[29] |
LIU Q T, LIU X F, ZHENG L R, et al. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells[J]. Angewandte Chemie International Edition, 2018, 57(5): 1204-1208. doi: 10.1002/anie.201709597
|
[30] |
SU P, ZHOU M H, LU X Y, et al. Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant[J]. Applied Catalysis B:Environmental, 2019, 245: 583-595. doi: 10.1016/j.apcatb.2018.12.075
|
[31] |
HAIDER M R, JIANG W L, HAN J L, et al. In-situ electrode fabrication from polyaniline derived N-doped carbon nanofibers for metal-free electro-Fenton degradation of organic contaminants[J]. Applied Catalysis B:Environmental, 2019, 256: 117774. doi: 10.1016/j.apcatb.2019.117774
|
[32] |
LIU X, WANG L, YU P, et al. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix[J]. Angewandte Chemie International Edition, 2018, 57(49): 16166-16170. doi: 10.1002/anie.201809009
|
[33] |
LIANG H W, WEI W, WU Z S, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of the American Chemical Society, 2013, 135(43): 16002-5. doi: 10.1021/ja407552k
|
[34] |
FAN L S, WU H X, WU X, et al. Fe-MOF derived jujube pit like Fe3O4/C composite as sulfur host for lithium-sulfur battery[J]. Electrochimica Acta, 2019, 295: 444-451. doi: 10.1016/j.electacta.2018.08.107
|
[35] |
SU P, ZHOU M H, REN G B, et al. A carbon nanotube-confined iron modified cathode with prominent stability and activity for heterogeneous electro-Fenton reactions[J]. Journal of Materials Chemistry A, 2019, 7(42): 24408-24419. doi: 10.1039/C9TA07491K
|
[36] |
QIN Y X, ZHANG L Z, AN T C. Hydrothermal carbon-mediated Fenton-like reaction mechanism in the degradation of alachlor: Direct electron transfer from hydrothermal carbon to Fe(III)[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17115-17124.
|
[37] |
YOO S H, JANG D, JOH H-I, et al. Iron oxide/porous carbon as a heterogeneous Fenton catalyst for fast decomposition of hydrogen peroxide and efficient removal of methylene blue[J]. Journal of Materials Chemistry A, 2017, 5(2): 748-755. doi: 10.1039/C6TA07457J
|
[38] |
RAO X F, SHAO X L, XU J, et al. Efficient nitrate removal from water using selected cathodes and Ti/PbO2 anode: Experimental study and mechanism verification[J]. Separation and Purification Technology, 2019, 216: 158-165. doi: 10.1016/j.seppur.2019.02.009
|
[39] |
WANG J L, WANG S Z. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism[J]. Chemical Engineering Journal, 2020, 401: 126158. doi: 10.1016/j.cej.2020.126158
|
[40] |
LIU Z, DING H J, ZHAO C, et al. Electrochemical activation of peroxymonosulfate with ACF cathode: Kinetics, influencing factors, mechanism, and application potential[J]. Water Research, 2019, 159: 111-121. doi: 10.1016/j.watres.2019.04.052
|
[41] |
CAO P K, QUAN X, ZHAO K, et al. Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis[J]. Journal of Hazardous Materials, 2020, 382: 121102. doi: 10.1016/j.jhazmat.2019.121102
|
[42] |
YANG Z C, QIAN J S, YU A Q, et al. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement[J]. Proceedings of the National Academy of Sciences, 2019, 116(14): 6659-6664. doi: 10.1073/pnas.1819382116
|
[43] |
DENG J, YU L, DENG D H, et al. Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls[J]. Journal of Materials Chemistry A, 2013, 1(47): 14868-14873. doi: 10.1039/c3ta13759g
|
[44] |
XIAO F, WANG Z N, FAN J Q, et al. Selective electrocatalytic reduction of oxygen to hydroxyl radicals via 3-electron pathway with FeCo alloy encapsulated carbon aerogel for fast and complete removing pollutants[J]. Angewandte Chemie International Edition, 2021, 60(18): 10375-10383. doi: 10.1002/anie.202101804
|