[1] AKERDI A G, BAHRAMI S H. Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: A review [J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103283. doi: 10.1016/j.jece.2019.103283
[2] CHOWDHURY P, ELKAMEL A, RAY A K. Photocatalytic processes for the removal of dye[M]//Green Chemistry for Dyes Removal from Wastewater. Hoboken, NJ, USA: John Wiley & Sons, Inc. , 2015: 119-137.
[3] ZHANG T, LIN W B. Metal-organic frameworks for artificial photosynthesis and photocatalysis [J]. Chemical Society Reviews, 2014, 43(16): 5982-5993. doi: 10.1039/C4CS00103F
[4] ZHANG N, ZHANG Y H, PAN X Y, et al. Assembly of CdS nanoparticles on the two-dimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions [J]. The Journal of Physical Chemistry C, 2011, 115(47): 23501-23511. doi: 10.1021/jp208661n
[5] JANG J S, HAM D J, LAKSHMINARASIMHAN N, et al. Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation [J]. Applied Catalysis A:General, 2008, 346(1/2): 149-154.
[6] JIANG D N, CHEN M, WANG H, et al. The application of different typological and structural MOFs-based materials for the dyes adsorption [J]. Coordination Chemistry Reviews, 2019, 380: 471-483. doi: 10.1016/j.ccr.2018.11.002
[7] FARRUSSENG D, AGUADO S, PINEL C. Metal-organic frameworks: Opportunities for catalysis [J]. Angewandte Chemie International Edition, 2009, 48(41): 7502-7513. doi: 10.1002/anie.200806063
[8] DOLGOPOLOVA E A, RICE A M, MARTIN C R, et al. Photochemistry and photophysics of MOFs: Steps towards MOF-based sensing enhancements [J]. Chemical Society Reviews, 2018, 47(13): 4710-4728. doi: 10.1039/C7CS00861A
[9] LI H, WANG K C, SUN Y J, et al. Recent advances in gas storage and separation using metal-organic frameworks [J]. Materials Today, 2018, 21(2): 108-121. doi: 10.1016/j.mattod.2017.07.006
[10] DHAKSHINAMOORTHY A, ALVARO M, GARCIA H. Commercial metal–organic frameworks as heterogeneous catalysts [J]. Chemical Communications, 2012, 48(92): 11275. doi: 10.1039/c2cc34329k
[11] FANG Z L, BUEKEN B, DE VOS D E, et al. Defect-engineered metal-organic frameworks [J]. Angewandte Chemie International Edition, 2015, 54(25): 7234-7254. doi: 10.1002/anie.201411540
[12] DHAKSHINAMOORTHY A, ASIRI A M, GARCÍA H. Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production [J]. Angewandte Chemie (International Ed. in English), 2016, 55(18): 5414-5445. doi: 10.1002/anie.201505581
[13] DHAKSHINAMOORTHY A, LI Z H, GARCIA H. Catalysis and photocatalysis by metal organic frameworks [J]. Chemical Society Reviews, 2018, 47(22): 8134-8172. doi: 10.1039/C8CS00256H
[14] WEN M C, MORI K, KUWAHARA Y, et al. Design and architecture of metal organic frameworks for visible light enhanced hydrogen production [J]. Applied Catalysis B:Environmental, 2017, 218: 555-569. doi: 10.1016/j.apcatb.2017.06.082
[15] JIANG H L, LIU B, AKITA T, et al. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal–organic framework [J]. Journal of the American Chemical Society, 2009, 131(32): 11302-11303. doi: 10.1021/ja9047653
[16] XIONG W P, ZENG Z T, LI X, et al. Multi-walled carbon nanotube/amino-functionalized MIL-53(Fe) composites: Remarkable adsorptive removal of antibiotics from aqueous solutions [J]. Chemosphere, 2018, 210: 1061-1069. doi: 10.1016/j.chemosphere.2018.07.084
[17] XU H Q, YANG S Z, MA X, et al. Unveiling charge-separation dynamics in CdS/metal–organic framework composites for enhanced photocatalysis [J]. ACS Catalysis, 2018, 8(12): 11615-11621. doi: 10.1021/acscatal.8b03233
[18] LIU Y, DENG L, SHENG J P, et al. Photostable core-shell CdS/ZIF-8 composite for enhanced photocatalytic reduction of CO2 [J]. Applied Surface Science, 2019, 498: 143899. doi: 10.1016/j.apsusc.2019.143899
[19] SAHA S, DAS G, THOTE J, et al. Photocatalytic metal–organic framework from CdS quantum dot incubated luminescent metallohydrogel [J]. Journal of the American Chemical Society, 2014, 136(42): 14845-14851. doi: 10.1021/ja509019k
[20] DHAKSHINAMOORTHY A, GARCIA H. Catalysis by metal nanoparticles embedded on metal-organic frameworks [J]. Chemical Society Reviews, 2012, 41(15): 5262-5284. doi: 10.1039/c2cs35047e
[21] ZENG M, CHAI Z G, DENG X, et al. Core-shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid [J]. Nano Research, 2016, 9(9): 2729-2734. doi: 10.1007/s12274-016-1161-3
[22] TIAN F Y, ZHANG H L, LIU S, et al. Visible-light-driven CO2 reduction to ethylene on CdS: Enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating [J]. Applied Catalysis B:Environmental, 2021, 285: 119834. doi: 10.1016/j.apcatb.2020.119834
[23] QIU J H, ZHANG X F, ZHANG X G, et al. Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction [J]. Journal of Hazardous Materials, 2018, 349: 234-241. doi: 10.1016/j.jhazmat.2018.02.009
[24] ZHANG H F, ZHAO M, YANG Y, et al. Hydrolysis and condensation of ZIF-8 in water [J]. Microporous and Mesoporous Materials, 2019, 288: 109568. doi: 10.1016/j.micromeso.2019.109568
[25] MORAIS P C, QU F Y. The quantum mechanical description of the dot-dot interaction in ionic colloids [J]. Journal of Alloys and Compounds, 2007, 434/435: 565-568. doi: 10.1016/j.jallcom.2006.08.184