[1] TANG Y X, LUO Z Y, YU C J, et al. Determination of biomass-coal blending ratio by 14C measurement in co-firing flue gas [J]. Journal of Zhejiang University-SCIENCE A, 2019, 20(7): 475-486. doi: 10.1631/jzus.A1900006
[2] AGBOR E, ZHANG X L, KUMAR A. A review of biomass co-firing in North America [J]. Renewable and Sustainable Energy Reviews, 2014, 40: 930-943. doi: 10.1016/j.rser.2014.07.195
[3] RODRÍGUEZ L S, BERMEJO MUÑOZ J M, ZAMBON A, et al. Determination of the biomass content of end-of-life tyres[M]//Biomass Volume Estimation and Valorization for Energy. InTech, 2017 .
[4] MOHN J, SZIDAT S, FELLNER J, et al. Determination of biogenic and fossil CO2 emitted by waste incineration based on 14CO2 and mass balances [J]. Bioresource Technology, 2008, 99(14): 6471-6479. doi: 10.1016/j.biortech.2007.11.042
[5] CONTRERAS M L, GANESH N, RODILLA I, et al. Assess of biomass co-firing under oxy-fuel conditions on Hg speciation and ash deposit formation [J]. Fuel, 2018, 215: 395-405. doi: 10.1016/j.fuel.2017.11.081
[6] MOHN J, SZIDAT S, ZEYER K, et al. Fossil and biogenic CO2 from waste incineration based on a yearlong radiocarbon study [J]. Waste Management, 2012, 32(8): 1516-1520. doi: 10.1016/j.wasman.2012.04.002
[7] STABER W, FLAMME S, FELLNER J. Methods for determining the biomass content of waste[J]. Waste Management & Research: the Journal for a Sustainable Circular Economy, 2008, 26(1): 78-87.
[8] NORTON G A, DEVLIN S L. Determining the modern carbon content of biobased products using radiocarbon analysis [J]. Bioresource Technology, 2006, 97(16): 2084-2090. doi: 10.1016/j.biortech.2005.08.017
[9] CALCAGNILE L, QUARTA G, D’ELIA M, et al. Radiocarbon AMS determination of the biogenic component in CO2 emitted from waste incineration [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions With Materials and Atoms, 2011, 269(24): 3158-3162. doi: 10.1016/j.nimb.2011.04.020
[10] QUARTA G, CICERI G, MARTINOTTI V, et al. Bringing AMS radiocarbon into the Anthropocene: Potential and drawbacks in the determination of the bio-fraction in industrial emissions and in carbon-based products [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions With Materials and Atoms, 2015, 361: 521-525. doi: 10.1016/j.nimb.2015.01.058
[11] LU J Y, FU L L, LI X M, et al. Capture efficiency of coal/biomass co-combustion ash in an electrostatic field [J]. Particuology, 2018, 40: 80-87. doi: 10.1016/j.partic.2017.10.006
[12] QUARTA G, CALCAGNILE L, CIPRIANO D, et al. AMS-14C determination of the biogenic-fossil fractions in flue gases [J]. Radiocarbon, 2018, 60(5): 1327-1333. doi: 10.1017/RDC.2018.88
[13] VOGEL J S, NELSON D E, SOUTHON J R. 14C background levels in an accelerator mass spectrometry system [J]. Radiocarbon, 1987, 29(3): 323-333. doi: 10.1017/S0033822200043733
[14] LOWE D C. Problems associated with the use of coal as a source of 14C-free background material [J]. Radiocarbon, 1989, 31(2): 117-120. doi: 10.1017/S0033822200044775
[15] CRAIG H. Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature [J]. The Journal of Geology, 1954, 62(2): 115-149. doi: 10.1086/626141
[16] COUSIN J, CHEN W D, FOURMENTIN M, et al. Laser spectroscopic monitoring of gas emission and measurements of the 13C/12C isotope ratio in CO2 from a wood-based combustion [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(1): 151-167. doi: 10.1016/j.jqsrt.2007.05.010
[17] FRIEDRICHS G, BOCK J, TEMPS F, et al. Toward continuous monitoring of seawater 13CO2/12CO2isotope ratio andpCO2: Performance of cavity ringdown spectroscopy and gas matrix effects [J]. Limnology and Oceanography:Methods, 2010, 8(10): 539-551. doi: 10.4319/lom.2010.8.539
[18] WEIDMANN D, WYSOCKI G, OPPENHEIMER C, et al. Development of a compact quantum cascade laser spectrometer for field measurements of CO2 isotopes [J]. Applied Physics B, 2005, 80(2): 255-260. doi: 10.1007/s00340-004-1639-7
[19] GHOSH P, BRAND W A. Stable isotope ratio mass spectrometry in global climate change research [J]. International Journal of Mass Spectrometry, 2003, 228(1): 1-33. doi: 10.1016/S1387-3806(03)00289-6
[20] BECKER J F, SAUKE T B, LOEWENSTEIN M. Stable isotope analysis using tunable diode laser spectroscopy [J]. Applied Optics, 1992, 31(12): 1921. doi: 10.1364/AO.31.001921
[21] TANS P P, BERRY J A, KEELING R F. Oceanic 13C/12C observations: A new window on ocean CO2 uptake [J]. Global Biogeochemical Cycles, 1993, 7(2): 353-368. doi: 10.1029/93GB00053
[22] GAGLIARDI G, CASTRILLO A, IANNONE R Q, et al. High-precision determination of the 13CO2/ 12CO2 isotope ratio using a portable 2.008-μm diode-laser spectrometer [J]. Applied Physics B, 2003, 77(1): 119-124. doi: 10.1007/s00340-003-1240-5
[23] SCHULZE B, WIRTH C, LINKE P, et al. Laser ablation-combustion-GC-IRMS—a new method for online analysis of intra-annual variation of δ13C in tree rings [J]. Tree Physiology, 2004, 24(11): 1193-1201. doi: 10.1093/treephys/24.11.1193
[24] CASTRILLO A, CASA G, KERSTEL E, et al. Diode laser absorption spectrometry for 13CO2/ 12CO2 isotope ratio analysis: Investigation on precision and accuracy levels [J]. Applied Physics B, 2005, 81(6): 863-869. doi: 10.1007/s00340-005-1949-4
[25] MOOK W G, van der PLICHT J. Reporting 14C activities and concentrations [J]. Radiocarbon, 1999, 41(3): 227-239. doi: 10.1017/S0033822200057106
[26] MURNICK D E, PEER B J. Laser-based analysis of carbon isotope ratios [J]. Science, 1994, 263(5149): 945-947. doi: 10.1126/science.8310291
[27] MCMANUS J B, ZAHNISER M S, NELSON D D, et al. Infrared laser spectrometer with balanced absorption for measurement of isotopic ratios of carbon gases [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2002, 58(11): 2465-2479. doi: 10.1016/S1386-1425(02)00064-1
[28] ALLARD P, MAIORANI A, TEDESCO D, et al. Isotopic study of the origin of sulfur and carbon in Solfatara fumaroles, Campi Flegrei caldera[J]. Journal of Volcanology and Geothermal Research, 1991, 48(1/2): 139-159.