[1] 孙立明, 邓舟, 夏洲, 等. 城市污水厂污泥处理处置现状分析及处理系统设计 [J]. 环境卫生工程, 2010, 18(4): 46-47,50. doi: 10.3969/j.issn.1005-8206.2010.04.016 SUN L M, DENG Z, XIA Z, et al. Treatment and disposal status of sludge from municipal wastewater plants and treatment system design [J]. Environmental Sanitation Engineering, 2010, 18(4): 46-47,50(in Chinese). doi: 10.3969/j.issn.1005-8206.2010.04.016
[2] 王东琴, 惠晓梅, 杨凯. 污泥处理处置技术进展 [J]. 山西化工, 2016, 36(3): 17-19,49. WANG D Q, HUI X M, YANG K. Research development of sludge treatment technology [J]. Shanxi Chemical Industry, 2016, 36(3): 17-19,49(in Chinese).
[3] 戴晓虎. 城镇污水处理厂污泥稳定化处理的必要性和迫切性的思考 [J]. 给水排水, 2017, 53(12): 1-5. doi: 10.3969/j.issn.1002-8471.2017.12.001 DAI X H. Necessity and urgency of sludge stabilization treatment in urban sewage treatment plant [J]. Water & Wastewater Engineering, 2017, 53(12): 1-5(in Chinese). doi: 10.3969/j.issn.1002-8471.2017.12.001
[4] 王永会, 赵明星, 阮文权. 餐厨垃圾与剩余污泥混合消化产沼气协同效应 [J]. 环境工程学报, 2014, 8(6): 2536-2542. WANG Y H, ZHAO M X, RUAN W Q. Synergistic effect of anaerobic co-digestion of food waste and excess sludge [J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2536-2542(in Chinese).
[5] 朱进. 污泥发酵产酸技术研究及应用进展 [J]. 山西化工, 2019, 39(5): 136-137. ZHU J. The research and progress on sludge fermentation acid production technology [J]. Shanxi Chemical Industry, 2019, 39(5): 136-137(in Chinese).
[6] 李冬娜, 马晓军. 污泥厌氧发酵产酸机理及应用研究进展 [J]. 生物质化学工程, 2020, 54(2): 51-60. doi: 10.3969/j.issn.1673-5854.2020.02.008 LI D N, MA X J. Mechanism and research progress of acid synthesis during sludge anaerobic fermentation [J]. Biomass Chemical Engineering, 2020, 54(2): 51-60(in Chinese). doi: 10.3969/j.issn.1673-5854.2020.02.008
[7] 叶秋月, 张赛楠. 污泥厌氧产酸发酵的影响因素及研究进展 [J]. 阜阳师范学院学报(自然科学版), 2019, 36(3): 15-20. YE Q Y, ZHANG S N. Influence factors and research progress in anaerobic acid fermentation of sludge [J]. Journal of Fuyang Normal University (Natural Science), 2019, 36(3): 15-20(in Chinese).
[8] 李华藩, 郑艳, 叶枢华, 等. 污泥餐厨垃圾不同混配比厌氧发酵产氢产甲烷 [J]. 福建师范大学学报(自然科学版), 2020, 36(4): 50-56. LI H F, ZHENG Y, YE S H, et al. Effect of different mixing ratios of sludge and kitchen waste anaerobic fermentation on hydrogen and methane production [J]. Journal of Fujian Normal University (Natural Science Edition), 2020, 36(4): 50-56(in Chinese).
[9] 戴金金, 牛承鑫, 潘阳, 等. 基于厌氧膜生物反应器的剩余污泥-餐厨垃圾厌氧共消化性能 [J]. 环境科学, 2020, 41(8): 3740-3747. DAI J J, NIU C X, PAN Y, et al. Performance of anaerobic membrane bioreactors for the co-digestion of sewage sludge and food waste [J]. Environmental Science, 2020, 41(8): 3740-3747(in Chinese).
[10] 周涛, 李阳, 宋楠, 等. 电刺激对餐厨垃圾-污泥共厌氧发酵产挥发性脂肪酸的影响 [J]. 环境工程学报, 2016, 10(12): 7195-7201. doi: 10.12030/j.cjee.201508031 ZHOU T, LI Y, SONG N, et al. Effect of electro-stimulation on volatile fatty acid production from anaerobic co-fermentation of food waste with activated sludge [J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7195-7201(in Chinese). doi: 10.12030/j.cjee.201508031
[11] 张莉, 刘和, 陈坚. 城市污泥添加厨余垃圾厌氧发酵产挥发性脂肪酸的研究 [J]. 工业微生物, 2011, 41(2): 26-31. ZHANG L, LIU H, CHEN J. Anaerobic acidogenic fermentation of wasted sewage sludge mixed with kitchen waste for production of volatile fatty acids [J]. Industrial Microbiology, 2011, 41(2): 26-31(in Chinese).
[12] 陈沂塽, 魏桃员, 周涛, 等. 电化学预处理对餐厨垃圾-污泥耦合厌氧发酵产挥发性脂肪酸的影响 [J]. 环境工程, 2021, 39(9): 187-192. CHEN Y S, WEI T Y, ZHOU T, et al. Effect of electrochemical pretreatment on production of volatile fatty acids by co-anaerobic fermentation of food waste and sewage sludge [J]. Environmental Engineering, 2021, 39(9): 187-192(in Chinese).
[13] 郑舍予. 剩余污泥联合餐厨垃圾高温共发酵产酸研究[D]. 上海: 华东理工大学, 2019. ZHENG S Y. Study on waste activated sludge thermophilic co-fermentation of acidification combined with food waste[D]. Shanghai: East China University of Science and Technology, 2019(in Chinese).
[14] 黄宇钊, 冼萍, 李桃, 等. 热碱处理污泥协同餐厨垃圾两相厌氧消化的特性 [J]. 环境工程, 2018, 36(9): 119-124. HUANG Y Z, XIAN P, LI T, et al. Two-phase anaerobic digestion performance of food waste and hot alkali treated sludge [J]. Environmental Engineering, 2018, 36(9): 119-124(in Chinese).
[15] 董春娟, 潘青业, 葛启隆, 等. 微氧颗粒污泥强化剩余污泥与餐厨垃圾协同消化 [J]. 中国给水排水, 2019, 35(11): 118-124. DONG C J, PAN Q Y, GE Q L, et al. Synergistic digestion characteristic of excess sludge and food waste enhanced by micro-aerobic granular sludge [J]. China Water & Wastewater, 2019, 35(11): 118-124(in Chinese).
[16] 郑小梅, 林茹晶, 周文静, 等. 微生物电解池辅助CO2甲烷化阴极材料的研究进展 [J]. 化工进展, 2022, 41(5): 2476-2486. ZHENG X M, LIN R J, ZHOU W J, et al. Review on cathode materials for CO2 methanation assisted by microbial electrolytic cell [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2476-2486(in Chinese).
[17] FENG Y H, ZHANG Y B, CHEN S, et al. Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode [J]. Chemical Engineering Journal, 2015, 259: 787-794. doi: 10.1016/j.cej.2014.08.048
[18] LUO X, ZHANG F, LIU J, et al. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions [J]. Environmental Science & Technology, 2014, 48(15): 8911-8918.
[19] NIU C X, PAN Y, LU X Q, et al. Mesophilic anaerobic digestion of thermally hydrolyzed sludge in anaerobic membrane bioreactor: Long-term performance, microbial community dynamics and membrane fouling mitigation [J]. Journal of Membrane Science, 2020, 612: 118264. doi: 10.1016/j.memsci.2020.118264
[20] 王万琼. 生物电化学强化污泥厌氧消化产甲烷效能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. WANG W Q. Bioelectrochemical system for the enhancement of methane production by anaerobic digestion of sludge[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
[21] QIN X, LU X Q, CAI T, et al. Magnetite-enhanced bioelectrochemical stimulation for biodegradation and biomethane production of waste activated sludge [J]. Science of the Total Environment, 2021, 789: 147859. doi: 10.1016/j.scitotenv.2021.147859
[22] WANG S S, HAN Y L, LU X Q, et al. Microbial mechanism underlying high methane production of coupled alkali-microwave-H2O2-oxidation pretreated sewage sludge by in situ bioelectrochemical regulation [J]. Journal of Cleaner Production, 2021, 305: 127195. doi: 10.1016/j.jclepro.2021.127195
[23] ZHI Z X, PAN Y, LU X Q, et al. Electrically regulating co-fermentation of sewage sludge and food waste towards promoting biomethane production and mass reduction [J]. Bioresource Technology, 2019, 279: 218-227. doi: 10.1016/j.biortech.2019.01.142
[24] APHA. Standard methods for the examination of water and wastewater [M]. 20th ed. Washington, DC, USA: A. P. H. Association, 1998.
[25] DUBIOS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugar and related substances [J]. Analytical Chemistry, 1956, 28: 250-256. doi: 10.1021/ac60110a033
[26] 周雨绮, 曹麒, 许俊超, 等. 不同来源底物对厌氧发酵产氢余物产甲烷影响 [J]. 环境工程, 2021, 39(9): 123-130. ZHOU Y Q, CAO L, XU J C, et al. Influence of different source substrate systems on methanogenesis of residue from anaerobic fermentative hydrogen production using combined sludge and food waste [J]. Environmental Engineering, 2021, 39(9): 123-130(in Chinese).
[27] 陈思远, 肖向哲, 滕俊, 等. 剩余污泥厌氧消化过程产甲烷抑制技术研究进展 [J]. 环境工程, 2021, 39(6): 137-143. CHEN S Y, XIAO X Z, TENG J, et al. Research progress on methanogenic inhibition technology during anaerobic digestion of excess sludge [J]. Environmental Engineering, 2021, 39(6): 137-143(in Chinese).
[28] JOURDIN L, FREGUIA S, DONOSE B C, et al. Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source [J]. Bioelectrochemistry, 2015, 102: 56-63. doi: 10.1016/j.bioelechem.2014.12.001
[29] LIENEMANN M, DEUTZMANN J S, MILTON R D, et al. Mediator-free enzymatic electrosynthesis of formate by the Methanococcus maripaludis heterodisulfide reductase super complex [J]. Bioresource Technology, 2018, 254: 278-283. doi: 10.1016/j.biortech.2018.01.036
[30] 王国华, 伊学农, 王峰, 等. 餐厨垃圾与污水污泥共消化产酸试验研究[J]. 环境工程, 2013, 31(S1): 166-169. WANG G H, YI X N, WANG F, et al. Study on acid production by anaerobic co-digestion of food waste and sewage sludge[J]. Environmental Engineering, 2013, 31(Sup 1): 166-169(in Chinese).
[31] BATSTONE D J, KELLER J, ANGELIDAKI I, et al. The IWA anaerobic digestion model no1 (ADM1) [J]. Water Science and Technology, 2002, 45(10): 65-73. doi: 10.2166/wst.2002.0292
[32] 马佳莹. 餐厨垃圾厌氧消化产甲烷强化策略及其微生物机制研究[D]. 上海: 华东师范大学, 2021. MA J Y. Enhancement for methane productivity of anaerobic digestion of food waste and its microbial mechanism[D]. Shanghai: East China Normal University, 2021(in Chinese).
[33] 周昱晗, 潘阳, 张瑞良, 等. 酸碱-微波耦合预处理对污泥胞外聚合物溶裂与产甲烷行为的影响 [J]. 环境工程, 2020, 38(12): 19-25,31. ZHOU Y H, PAN Y, ZHANG R L, et al. Effect of acid-alkali microwave combined pretreatment on rupture of sludge extracellular polymeric substances and methane production [J]. Environmental Engineering, 2020, 38(12): 19-25,31(in Chinese).
[34] ZHEN G Y, LU X Q, KOBAYASHI T, et al. Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp. ) and food waste: Kinetic modeling and synergistic impact evaluation [J]. Chemical Engineering Journal, 2016, 299: 332-341. doi: 10.1016/j.cej.2016.04.118
[35] NAM J Y, KIM D H, KIM S H, et al. Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode [J]. Environmental Science and Pollution Research, 2016, 23(8): 7155-7161. doi: 10.1007/s11356-015-4880-1
[36] 张尧, 张闻杰, 蒋永, 等. 生物电化学系统固定二氧化碳同时产生乙酸和丁酸 [J]. 应用与环境生物学报, 2014, 20(2): 174-178. ZHANG Y, ZHANG W J, JIANG Y, et al. Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems [J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(2): 174-178(in Chinese).
[37] JOURDIN L, FREGUIA S, FLEXER V, et al. Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions [J]. Environmental Science & Technology, 2016, 50(4): 1982-1989.
[38] ALBO J, ALVAREZ-GUERRA M, CASTANO P, et al. ChemInform abstract: Towards the electrochemical conversion of carbon dioxide into methanol[J]. Green Chem, 2015,46(24): 1-27.
[39] HUANG W T, CHEN J F, HU Y Y, et al. Enhanced simultaneous decolorization of azo dye and electricity generation in microbial fuel cell (MFC) with redox mediator modified anode [J]. International Journal of Hydrogen Energy, 2017, 42(4): 2349-2359. doi: 10.1016/j.ijhydene.2016.09.216
[40] ZHEN G Y, LU X Q, LI Y Y, et al. Novel insights into enhanced dewaterability of waste activated sludge by Fe(II)-activated persulfate oxidation [J]. Bioresource Technology, 2012, 119: 7-14. doi: 10.1016/j.biortech.2012.05.115
[41] 郑韶娟, 陆雪琴, 张衷译, 等. 微生物电解池: 生物电催化辅助CO2甲烷化技术 [J]. 环境化学, 2019, 38(7): 1666-1674. doi: 10.7524/j.issn.0254-6108.2018091502 ZHENG S J, LU X Q, ZHANG Z Y, et al. Microbial electrolysis cell (MEC): A new platform for CO2 bioelectromethanogenesis assisted by bioelectrocatalysis [J]. Environmental Chemistry, 2019, 38(7): 1666-1674(in Chinese). doi: 10.7524/j.issn.0254-6108.2018091502
[42] 孙宏扬. 污泥厌氧消化—微生物电解耦合工艺产甲烷效能分析[D]. 哈尔滨: 哈尔滨工业大学, 2014. SUN H Y. Microbial electrolysis coupled sludge anaerobic digestion methanogenic process for waste activated sludge treatment[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
[43] 赵丹, 任南琪, 王爱杰, 等. 产酸相稳定发酵类型微生物生态学研究 [J]. 环境科学与技术, 2003, 26(6): 37-38,48. doi: 10.3969/j.issn.1003-6504.2003.06.016 ZHAO D, REN N Q, WANG A J, et al. Study on microbiological ecology of steady fermentation in acidogenic phase [J]. Environmental Science and Technology, 2003, 26(6): 37-38,48(in Chinese). doi: 10.3969/j.issn.1003-6504.2003.06.016
[44] 毛政中, 孙怡, 黄志鹏, 等. 微生物电解池产甲烷技术研究进展 [J]. 化工学报, 2019, 70(7): 2411-2425. MAO Z Z, SUN Y, HUANG Z P, et al. Progress of research on methanogenic microbial electrolysis cell [J]. CIESC Journal, 2019, 70(7): 2411-2425(in Chinese).