[1] YANG H K, XUE W, LIU M J, et al. Carbon doped Fe3O4 peroxidase-like nanozyme for mitigating the membrane fouling by NOM at neutral pH [J]. Water Research, 2020, 174: 115637. doi: 10.1016/j.watres.2020.115637
[2] KILDUFF J E, MATTARAJ S, ZHOU M Y, et al. Kinetics of membrane flux decline: The role of natural colloids and mitigation via membrane surface modification [J]. Journal of Nanoparticle Research, 2005, 7(4/5): 525-544.
[3] CUI H, WANG J X, LIU T, et al. Spatial and seasonal patterns of dissolved organic matter hydrophobicity in Lake Taihu revealed by the aqueous two-phase system [J]. Science of the Total Environment, 2021, 776: 145892. doi: 10.1016/j.scitotenv.2021.145892
[4] CHIOU C T, PETERS L J, FREED V H. A physical concept of soil-water equilibria for nonionic organic compounds [J]. Science, 1979, 206(4420): 831-832. doi: 10.1126/science.206.4420.831
[5] KNULST J C, BOERSCHKE R C, LOEMO S. Differences in organic surface microlayers from an artificially acidified and control lake, elucidated by XAD-8/XAD-4 tandem separation and solid state 13C NMR spectroscopy [J]. Environmental Science & Technology, 1998, 32(1): 8-12.
[6] CROUÉ J P, BENEDETTI M F, VIOLLEAU D, et al. Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: Evidence for the presence of nitrogenous binding site [J]. Environmental Science & Technology, 2003, 37(2): 328-336.
[7] MOPPER K, STUBBINS A, RITCHIE J D, et al. Advanced instrumental approaches for characterization of marine dissolved organic matter: Extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy [J]. Chemical Reviews, 2007, 107(2): 419-442. doi: 10.1021/cr050359b
[8] PEURAVUORI J. Binding of Pyrene on lake aquatic humic matter: The role of structural descriptors [J]. Analytica Chimica Acta, 2001, 429(1): 75-89. doi: 10.1016/S0003-2670(00)01259-9
[9] NAMJESNIK-DEJANOVIC K, CABANISS S E. Reverse-phase HPLC method for measuring polarity distributions of natural organic matter [J]. Environmental Science & Technology, 2004, 38(4): 1108-1114.
[10] WU F C, EVANS R D, DILLON P J. Separation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection [J]. Environmental Science & Technology, 2003, 37(16): 3687-3693.
[11] STENSON A C. Reversed-phase chromatography fractionation tailored to mass spectral characterization of humic substances [J]. Environmental Science & Technology, 2008, 42(6): 2060-2065.
[12] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon [J]. Environmental Science & Technology, 2003, 37(20): 4702-4708.
[13] CHIN Y P, AIKEN G R, DANIELSEN K M. Binding of Pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity [J]. Environmental Science & Technology, 1997, 31(6): 1630-1635.
[14] HUR J, SCHLAUTMAN M A. Using selected operational descriptors to examine the heterogeneity within a bulk humic substance [J]. Environmental Science & Technology, 2003, 37(5): 880-887.
[15] FU H Y, LIU K, ALVAREZ P J J, et al. Quantifying hydrophobicity of natural organic matter using partition coefficients in aqueous two-phase systems [J]. Chemosphere, 2019, 218: 922-929. doi: 10.1016/j.chemosphere.2018.11.183
[16] FREIRE M G, CLÁUDIO A F M, ARAÚJO J M M, et al. Aqueous biphasic systems: A boost brought about by using ionic liquids [J]. Chemical Society Reviews, 2012, 41(14): 4966-4995. doi: 10.1039/c2cs35151j
[17] ASENJO J A, ANDREWS B A. Aqueous two-phase systems for protein separation: A perspective [J]. Journal of Chromatography A, 2011, 1218(49): 8826-8835. doi: 10.1016/j.chroma.2011.06.051
[18] HATTI-KAUL R. Aqueous two-phase systems. A general overview [J]. Molecular Biotechnology, 2001, 19(3): 269-277. doi: 10.1385/MB:19:3:269
[19] IQBAL M, TAO Y F, XIE S Y, et al. Aqueous two-phase system (ATPS): An overview and advances in its applications [J]. Biological Procedures Online, 2016, 18: 18. doi: 10.1186/s12575-016-0048-8
[20] ANDREWS B A, ASENJO J A. Theoretical and experimental evaluation of hydrophobicity of proteins to predict their partitioning behavior in aqueous two phase systems: A review [J]. Separation Science and Technology, 2010, 45(15): 2165-2170. doi: 10.1080/01496395.2010.507436
[21] ANDREWS B A, SCHMIDT A S, ASENJO J A. Correlation for the partition behavior of proteins in aqueous two-phase systems: Effect of surface hydrophobicity and charge [J]. Biotechnology and Bioengineering, 2005, 90(3): 380-390. doi: 10.1002/bit.20495
[22] FRANCO T T, ANDREWS A T, ASENJO J A. Use of chemically modified proteins to study the effect of a single protein property on partitioning in aqueous two-phase systems: Effect of surface charge [J]. Biotechnology and Bioengineering, 1996, 49(3): 309-315. doi: 10.1002/(SICI)1097-0290(19960205)49:3<309::AID-BIT9>3.0.CO;2-O
[23] HACHEM F, ANDREWS B A, ASENJO J A. Hydrophobic partitioning of proteins in aqueous two-phase systems [J]. Enzyme and Microbial Technology, 1996, 19(7): 507-517. doi: 10.1016/S0141-0229(96)80002-D
[24] ABRAHAM M H, POOLE C F, POOLE S K. Classification of stationary phases and other materials by gas chromatography [J]. Journal of Chromatography A, 1999, 842(1/2): 79-114.
[25] ABRAHAM M H. Hydrogen bonding. 31. Construction of a scale of solute effective or summation hydrogen-bond basicity [J]. Journal of Physical Organic Chemistry, 1993, 6(12): 660-684. doi: 10.1002/poc.610061204
[26] ABRAHAM M H, DOHERTY R M, KAMLET M J, et al. Linear solvation energy relationships. Part 37. An analysis of contributions of dipolarity–polarisability, nucleophilic assistance, electrophilic assistance, and cavity terms to solvent effects on t-butyl halide solvolysis rates [J]. J Chem Soc, Perkin Trans 2, 1987(7): 913-920.
[27] GOSS K U, SCHWARZENBACH R P. Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds [J]. Environmental Science & Technology, 2001, 35(1): 1-9.
[28] ENDO S, GOSS K U. Applications of polyparameter linear free energy relationships in environmental chemistry [J]. Environmental Science & Technology, 2014, 48(21): 12477-12491.
[29] ULRICH N; ENDO S; BROWN T N, et al. UFZ-LSER Database, v 3.2 [Internet]. 2017.
[30] NGUYEN T H, GOSS K U, BALL W P. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments [J]. Environmental Science & Technology, 2005, 39(4): 913-924.
[31] BRONNER G, GOSS K U. Predicting sorption of pesticides and other multifunctional organic chemicals to soil organic carbon [J]. Environmental Science & Technology, 2011, 45(4): 1313-1319.
[32] NEALE P A, ESCHER B I, GOSS K U, et al. Evaluating dissolved organic carbon-water partitioning using polyparameter linear free energy relationships: Implications for the fate of disinfection by-products [J]. Water Research, 2012, 46(11): 3637-3645. doi: 10.1016/j.watres.2012.04.005
[33] ENDO S, GRATHWOHL P, HADERLEIN S B, et al. LFERs for soil organic carbon–water distribution coefficients (KOC) at environmentally relevant sorbate concentrations [J]. Environmental Science & Technology, 2009, 43(9): 3094-3100.
[34] SCHWARZENBACH R P, GSCHWEND P M, IMBODEN D M. Environmental organic chemistry[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc. , 2002.
[35] LIU K, FU H Y, ZHU D Q, et al. Prediction of apolar compound sorption to aquatic natural organic matter accounting for natural organic matter hydrophobicity using aqueous two-phase systems [J]. Environmental Science & Technology, 2019, 53(14): 8127-8135.
[36] LIU K, KONG L R, WANG J X, et al. Two-phase system model to assess hydrophobic organic compound sorption to dissolved organic matter [J]. Environmental Science & Technology, 2020, 54(19): 12173-12180.
[37] WEI P Y, FU H Y, XU Z Y, et al. Prediction of hydrophobic organic compound partition to algal organic matter through the growth cycle of Microcystis aeruginosa [J]. Environmental Pollution, 2021, 289: 117827. doi: 10.1016/j.envpol.2021.117827
[38] SUMMERS R S, CORNEL P K, ROBERTS P V. Molecular size distribution and spectroscopic characterization of humic substances [J]. Science of the Total Environment, 1987, 62: 27-37. doi: 10.1016/0048-9697(87)90478-5
[39] HELMS J R, MAO J D, STUBBINS A, et al. Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching [J]. Aquatic Sciences, 2014, 76(3): 353-373. doi: 10.1007/s00027-014-0340-0
[40] POOLE S K, POOLE C F. Chromatographic models for the sorption of neutral organic compounds by soil from water and air [J]. Journal of Chromatography A, 1999, 845(1/2): 381-400.
[41] CORNELISSEN G, GUSTAFSSON O, BUCHELI T D, et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation [J]. Environmental Science & Technology, 2005, 39(18): 6881-6895.
[42] XING B S, PIGNATELLO J J. Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter [J]. Environmental Science & Technology, 1997, 31(3): 792-799.
[43] RAN Y, HUANG W L, RAO P S C, et al. The role of condensed organic matter in the nonlinear sorption of hydrophobic organic contaminants by a peat and sediments [J]. Journal of Environmental Quality, 2002, 31(6): 1953-1962. doi: 10.2134/jeq2002.1953
[44] PAN B, GHOSH S, XING B S. Nonideal binding between dissolved humic acids and polyaromatic hydrocarbons [J]. Environmental Science & Technology, 2007, 41(18): 6472-6478.