[1] BAMFORTH S M, SINGLETON I. Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions [J]. Journal of Chemical Technology & Biotechnology, 2005, 80(7): 723-736.
[2] HARITASH A K, KAUSHIK C P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review [J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 1-15.
[3] GHOSAL D, GHOSH S, DUTTA T K, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review [J]. Frontiers in Microbiology, 2016, 7: 1369.
[4] FETZER J C. The chemistry and analysis of large PAHs [J]. Polycyclic Aromatic Compounds, 2007, 27(2): 143-162. doi: 10.1080/10406630701268255
[5] NOH J, KIM H, LEE C, et al. Bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) by the marine clam, Mactra veneriformis, chronically exposed to oil-suspended particulate matter aggregates [J]. Environmental Science & Technology, 2018, 52(14): 7910-7920.
[6] HONG W J, JIA H L, YANG M, et al. Distribution, seasonal trends, and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons in North China: A three-year case study in Dalian city [J]. Ecotoxicology and Environmental Safety, 2020, 196: 110526. doi: 10.1016/j.ecoenv.2020.110526
[7] HUANG Q, ZHU Y X, WU F, et al. Parent and alkylated polycyclic aromatic hydrocarbons in surface sediments of mangrove wetlands across Taiwan Strait, China: Characteristics, sources and ecological risk assessment [J]. Chemosphere, 2021, 265: 129168. doi: 10.1016/j.chemosphere.2020.129168
[8] LIM H, SADIKTSIS I, de OLIVEIRA GALVÃO M F, et al. Polycyclic aromatic compounds in particulate matter and indoor dust at preschools in Stockholm, Sweden: Occurrence, sources and genotoxic potential in vitro [J]. Science of the Total Environment, 2021, 755: 142709. doi: 10.1016/j.scitotenv.2020.142709
[9] CASAL C S, ARBILLA G, CORRÊA S M. Alkyl polycyclic aromatic hydrocarbons emissions in diesel/biodiesel exhaust [J]. Atmospheric Environment, 2014, 96: 107-116. doi: 10.1016/j.atmosenv.2014.07.028
[10] MU J L, WANG J Y, JIN F, et al. Comparative embryotoxicity of phenanthrene and alkyl-phenanthrene to marine medaka (Oryzias melastigma) [J]. Marine Pollution Bulletin, 2014, 85(2): 505-515. doi: 10.1016/j.marpolbul.2014.01.040
[11] MALMQUIST L M V, SELCK H, JØRGENSEN K B, et al. Polycyclic aromatic acids are primary metabolites of alkyl-PAHs—A case study with Nereis diversicolor [J]. Environmental Science & Technology, 2015, 49(9): 5713-5721.
[12] YANG C, WANG Z D, HOLLEBONE B P, et al. Chromatographic fingerprinting analysis of crude oils and petroleum products[M]//Handbook of Oil Spill Science and Technology. Hoboken, NJ: John Wiley & Sons, Inc, 2015: 93-163.
[13] FALLAHTAFTI S, RANTANEN T, BROWN R S, et al. Toxicity of hydroxylated alkyl-phenanthrenes to the early life stages of Japanese medaka (Oryzias latipes) [J]. Aquatic Toxicology, 2012, 106/107: 56-64. doi: 10.1016/j.aquatox.2011.10.007
[14] HINDERSMANN B, ACHTEN C. Urban soils impacted by tailings from coal mining: PAH source identification by 59 PAHs, BPCA and alkylated PAHs [J]. Environmental Pollution, 2018, 242: 1217-1225. doi: 10.1016/j.envpol.2018.08.014
[15] YUAN K, WANG X W, LIN L, et al. Characterizing the parent and alkyl polycyclic aromatic hydrocarbons in the Pearl River Estuary, Daya Bay and northern South China Sea: Influence of riverine input [J]. Environmental Pollution, 2015, 199: 66-72. doi: 10.1016/j.envpol.2015.01.017
[16] LIAN J J, REN Y, CHEN J M, et al. Distribution and source of alkyl polycyclic aromatic hydrocarbons in dustfall in Shanghai, China: The effect on the coastal area [J]. J Environ Monit, 2009, 11(1): 187-192. doi: 10.1039/B814232G
[17] SAHA M H, TOGO A, MIZUKAWA K, et al. Sources of sedimentary PAHs in tropical Asian waters: Differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance [J]. Marine Pollution Bulletin, 2009, 58(2): 189-200. doi: 10.1016/j.marpolbul.2008.04.049
[18] WAMMER K H, PETERS C A. Polycyclic aromatic hydrocarbon biodegradation rates: A structure-based study [J]. Environmental Science & Technology, 2005, 39(8): 2571-2578.
[19] YIM U H, HA S Y, AN J G, et al. Fingerprint and weathering characteristics of stranded oils after the Hebei Spirit oil spill [J]. Journal of Hazardous Materials, 2011, 197: 60-69. doi: 10.1016/j.jhazmat.2011.09.055
[20] HONG W J, JIA H L, SUN Y Q, et al. Distribution, source and ecological risk assessment of parent and alkylated PAHs in coastal environment of Dalian, China after oil spill [J]. Polycyclic Aromatic Compounds, 2020, 40(4): 998-1012. doi: 10.1080/10406638.2018.1517809
[21] TURCOTTE D, AKHTAR P, BOWERMAN M, et al. Measuring the toxicity of alkyl-phenanthrenes to early life stages of medaka (Oryzias latipes) using partition-controlled delivery [J]. Environmental Toxicology and Chemistry, 2011, 30(2): 487-495. doi: 10.1002/etc.404
[22] BILLIARD S M, QUERBACH K, HODSON P V. Toxicity of retene to early life stages of two freshwater fish species [J]. Environmental Toxicology and Chemistry, 1999, 18(9): 2070-2077. doi: 10.1002/etc.5620180927
[23] BRINKWORTH L C, HODSON P V, TABASH S, et al. cyp1a induction and blue sac disease in early developmental stages of rainbow trout (Oncorhynchus mykiss) exposed to retene [J]. Journal of Toxicology and Environmental Health, Part A, 2003, 66(7): 627-646. doi: 10.1080/15287390309353771
[24] BILLIARD S M, HAHN M E, FRANKS D G, et al. Binding of polycyclic aromatic hydrocarbons (PAHs) to teleost aryl hydrocarbon receptors (AHRs) [J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2002, 133(1): 55-68. doi: 10.1016/S1096-4959(02)00105-7
[25] HALLIWELL B, GUTTERIDGE J M C. Free radicals in biology and medicine, second edition [J]. Free Radical Biology and Medicine, 1991, 10(6): 449-450. doi: 10.1016/0891-5849(91)90055-8
[26] CHEN X P, CHEN Y H, HUANG C J, et al. Neurodevelopmental toxicity assessments of alkyl phenanthrene and Dechlorane Plus co-exposure in zebrafish [J]. Ecotoxicology and Environmental Safety, 2019, 180: 762-769. doi: 10.1016/j.ecoenv.2019.05.066
[27] FINGAS M. The basics of oil spill cleanup [J]. Journal of Fusion Energy, 2012, 12(1/2): 53-57.
[28] NEFF J M, STOUT S A, GUNSTER D G. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: Identifying sources and ecological hazard [J]. Integrated Environmental Assessment and Management, 2005, 1(1): 22-33. doi: 10.1897/IEAM_2004a-016.1
[29] ABDEL-SHAFY H I, MANSOUR M S M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation [J]. Egyptian Journal of Petroleum, 2016, 25(1): 107-123. doi: 10.1016/j.ejpe.2015.03.011
[30] ZHANG H Y, LIU Y, SHEN X F, et al. Influence of multiwalled carbon nanotubes and sodium dodecyl benzene sulfonate on bioaccumulation and translocation of Pyrene and 1-methylpyrene in maize (Zea mays) seedlings [J]. Environmental Pollution, 2017, 220: 1409-1417. doi: 10.1016/j.envpol.2016.10.093
[31] SUN H F, GUO S, NAN Y L, et al. Direct determination of surfactant effects on the uptake of gaseous parent and alkylated PAHs by crop leaf surfaces [J]. Ecotoxicology and Environmental Safety, 2018, 154: 206-213. doi: 10.1016/j.ecoenv.2018.02.045
[32] SVERDRUP L E, KROGH P H, NIELSEN T, et al. Toxicity of eight polycyclic aromatic compounds to red clover (Trifolium pratense), ryegrass (Lolium perenne), and mustard (Sinapsis alba) [J]. Chemosphere, 2003, 53(8): 993-1003. doi: 10.1016/S0045-6535(03)00584-8
[33] BALDYGA B, WIECZOREK J, SMOCZYNSKI S, et al. Pea plant response to anthracene present in soil [J]. Polish Journal of Environmental Studies, 2005, 14(4): 397-401.
[34] HENNER P, SCHIAVON M, DRUELLE V, et al. Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination [J]. Organic Geochemistry, 1999, 30(8): 963-969. doi: 10.1016/S0146-6380(99)00080-7
[35] ALKIO M, TABUCHI T M, WANG X C, et al. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms [J]. Journal of Experimental Botany, 2005, 56(421): 2983-2994. doi: 10.1093/jxb/eri295
[36] 周正宇. 甲基取代多环芳烃的致癌活性与其分子轨道之间的关系 [J]. 曲阜师范大学学报(自然科学版), 1986, 12(2): 56-60. ZHOU Z Y. Relation between carcinogenicty of methylated polycyclic aromatic hydrocarbons and its molecular qrbit [J]. Journal of Qufu Normal University (Natural Science), 1986, 12(2): 56-60(in Chinese).
[37] JERINA D M, LEHR R E. The bay-region theory: a quantum mechanical approach to aromatic hydrocarbon-induced carcinogenicity[M]//Microsomes and Drug Oxidations. Amsterdam: Elsevier, 1977: 709-720.
[38] POULSEN M T, LOEW G H. Quantum chemical studies of methyl and fluoro analogs of chrysene: Metabolic activation and correlation with carcinogenic activity [J]. Cancer Biochemistry Biophysics, 1981, 5(2): 81-90.
[39] MU J L, JIN F, WANG J Y, et al. The effects of CYP1A inhibition on alkyl-phenanthrene metabolism and embryotoxicity in marine medaka (Oryzias melastigma) [J]. Environmental Science and Pollution Research, 2016, 23(11): 11289-11297. doi: 10.1007/s11356-016-6098-2
[40] HUANG M, ZHANG L, MESAROS C, et al. Metabolism of an alkylated polycyclic aromatic hydrocarbon 5-methylchrysene in human hepatoma (HepG2) cells [J]. Chemical Research in Toxicology, 2015, 28(10): 2045-2058. doi: 10.1021/acs.chemrestox.5b00256
[41] CERNIGLIA C E, LAMBERT K J, MILLER D W, et al. Transformation of 1-and 2-methylnaphthalene by Cunninghamella elegans [J]. Applied and Environmental Microbiology, 1984, 47(1): 111-118. doi: 10.1128/aem.47.1.111-118.1984
[42] VAZQUEZ-DUHALT R, WESTLAKE D W S, FEDORAK P M. Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents [J]. Applied and Environmental Microbiology, 1994, 60(2): 459-466. doi: 10.1128/aem.60.2.459-466.1994
[43] ARANDA E, ULLRICH R, HOFRICHTER M. Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases [J]. Biodegradation, 2010, 21(2): 267-281. doi: 10.1007/s10532-009-9299-2
[44] LUO L J, XIAO Z Y, ZHOU X Y, et al. Quantum chemical calculation to elucidate the biodegradation pathway of methylphenanthrene by green microalgae [J]. Water Research, 2020, 173: 115598. doi: 10.1016/j.watres.2020.115598
[45] 杜兰. 新鞘氨醇杆菌US6-1对溶解态菲及甲基菲生物降解过程的研究[D]. 厦门: 厦门大学, 2017. DU L. Study on the biodegradation of dissolved phenanthrene and methyl phenanthrene by Novosphingobium pentaromativorans US6-1[D]. Xiamen: Xiamen University, 2017(in Chinese).
[46] SIDDIQI M A, YUAN Z X, HONEY S A, et al. Metabolism of PAHs and methyl-substituted PAHs by Sphingomonas paucimobilis strain EPA 505 [J]. Polycyclic Aromatic Compounds, 2002, 22(3/4): 621-630.
[47] BUGG T, FOGHT J M, PICKARD M A, et al. Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a [J]. Applied and Environmental Microbiology, 2000, 66(12): 5387-5392. doi: 10.1128/AEM.66.12.5387-5392.2000
[48] POPHRISTIC V, GOODMAN L. Hyperconjugation not steric repulsion leads to the staggered structure of ethane [J]. Nature, 2001, 411(6837): 565-568. doi: 10.1038/35079036
[49] VOLKMAN J K, ALEXANDER R, KAGI R I, et al. Biodegradation of aromatic hydrocarbons in crude oils from the Barrow Sub-basin of Western Australia [J]. Organic Geochemistry, 1984, 6: 619-632. doi: 10.1016/0146-6380(84)90084-6
[50] HUANG H P, BOWLER B F J, OLDENBURG T B P, et al. The effect of biodegradation on polycyclic aromatic hydrocarbons in reservoired oils from the Liaohe basin, NE China [J]. Organic Geochemistry, 2004, 35(11/12): 1619-1634.
[51] WILLIAMS P A, CATTERALL F A, MURRAY K. Metabolism of naphthalene, 2-methylnaphthalene, salicylate, and benzoate by Pseudomonas PG: Regulation of tangential pathways [J]. Journal of Bacteriology, 1975, 124(2): 679-685. doi: 10.1128/jb.124.2.679-685.1975
[52] MAHAJAN M C, PHALE P S, VAIDYANATHAN C S. Evidence for the involvement of multiple pathways in the biodegradation of 1-and 2-methylnaphthalene by Pseudomonas putida CSV86 [J]. Archives of Microbiology, 1994, 161(5): 425-433. doi: 10.1007/BF00288954
[53] SHARANAGOUDA U, KAREGOUDAR T B. Degradation of 2-methylnaphthalene by Pseudomonas sp. strain NGK1 [J]. Current Microbiology, 2001, 43(6): 440-443. doi: 10.1007/s002840010335
[54] DUTTA T K, SELIFONOV S A, GUNSALUS I C. Oxidation of methyl-substituted naphthalenes: Pathways in a versatile Sphingomonas paucimobilis strain [J]. Applied and Environmental Microbiology, 1998, 64(5): 1884-1889. doi: 10.1128/AEM.64.5.1884-1889.1998
[55] NADALIG T, RAYMOND N, NI'MATUZAHROH, et al. Degradation of phenanthrene, methylphenanthrenes and dibenzothiophene by a Sphingomonas strain 2mpII [J]. Applied Microbiology and Biotechnology, 2002, 59(1): 79-85. doi: 10.1007/s00253-002-0960-5
[56] LAMBERTS R F, CHRISTENSEN J H, MAYER P, et al. Isomer-specific biodegradation of methylphenanthrenes by soil bacteria [J]. Environmental Science & Technology, 2008, 42(13): 4790-4796.
[57] ZHONG J N, LUO L J, CHEN B W, et al. Degradation pathways of 1-methylphenanthrene in bacterial Sphingobium sp. MP9-4 isolated from petroleum-contaminated soil [J]. Marine Pollution Bulletin, 2017, 114(2): 926-933. doi: 10.1016/j.marpolbul.2016.11.020
[58] DELLAGNEZZE B M, de SOUSA G V, MARTINS L L, et al. Bioremediation potential of microorganisms derived from petroleum reservoirs [J]. Marine Pollution Bulletin, 2014, 89(1/2): 191-200.
[59] SEO J S, KEUM Y S, LI Q X. Bacterial degradation of aromatic compounds [J]. International Journal of Environmental Research and Public Health, 2009, 6(1): 278-309. doi: 10.3390/ijerph6010278
[60] TAKIZAWA N, IIDA T, SAWADA T, et al. Nucleotide sequences and characterization of genes encoding naphthalene upper pathway of Pseudomonas aeruginosa PaK1 and Pseudomonas putida OUS82 [J]. Journal of Bioscience and Bioengineering, 1999, 87(6): 721-731. doi: 10.1016/S1389-1723(99)80144-3
[61] DAVIES J I, EVANS W C. Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism [J]. The Biochemical Journal, 1964, 91(2): 251-261. doi: 10.1042/bj0910251
[62] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984.
[63] KASAI Y, KISHIRA H, HARAYAMA S. Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment [J]. Applied and Environmental Microbiology, 2002, 68(11): 5625-5633. doi: 10.1128/AEM.68.11.5625-5633.2002
[64] MUELLER-SPITZ S R, CRAWFORD K D. Silver nanoparticle inhibition of polycyclic aromatic hydrocarbons degradation by Mycobacterium species RJGII-135 [J]. Letters in Applied Microbiology, 2014, 58(4): 330-337. doi: 10.1111/lam.12205
[65] HEDLUND B P, GEISELBRECHT A D, BAIR T J, et al. Polycyclic Aromatic Hydrocarbon Degradation by a New Marine Bacterium, Neptunomonas naphthovorans gen. nov., sp. nov [J]. Applied and Environmental Microbiology, 1999, 65(1): 251-259. doi: 10.1128/AEM.65.1.251-259.1999
[66] OGUNBAYO A, OLANIPEKUN O, OWOADE A. Biodegradation of certain polycyclic hydrocarbons with paenbacillus alvei and penicillum restricum [J]. Journal of Ecological Engineering, 2018, 19(2): 140-148. doi: 10.12911/22998993/81808
[67] 向廷生, 马飞, 潘科. 轻中度生物降解作用对原油中烷基萘和烷基菲的影响 [J]. 西安石油大学学报(自然科学版), 2012, 27(1): 81-86,122. XIANG T S, MA F, PAN K. Effect of mild-to-moderate biodegradation on alkyl naphthalene and alkyl phenanthrene in crude oil [J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2012, 27(1): 81-86,122(in Chinese).
[68] MUSAT F, GALUSHKO A, JACOB J, et al. Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria [J]. Environmental Microbiology, 2009, 11(1): 209-219. doi: 10.1111/j.1462-2920.2008.01756.x
[69] BERDUGO-CLAVIJO C, DONG X L, SOH J, et al. Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons [J]. FEMS Microbiology Ecology, 2012, 81(1): 124-133. doi: 10.1111/j.1574-6941.2012.01328.x
[70] FOLWELL B D, MCGENITY T J, PRICE A, et al. Exploring the capacity for anaerobic biodegradation of polycyclic aromatic hydrocarbons and naphthenic acids by microbes from oil-sands-process-affected waters [J]. International Biodeterioration & Biodegradation, 2016, 108: 214-221.
[71] BUDZINSKI H, GARRIGUES P, CONNAN J, et al. Alkylated phenanthrene distributions as maturity and origin indicators in crude oils and rock extracts [J]. Geochimica et Cosmochimica Acta, 1995, 59(10): 2043-2056. doi: 10.1016/0016-7037(95)00125-5
[72] RADKE M. Application of aromatic compounds as maturity indicators in source rocks and crude oils [J]. Marine and Petroleum Geology, 1988, 5(3): 224-236. doi: 10.1016/0264-8172(88)90003-7
[73] SAMANTA S K, SINGH O V, JAIN R K. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation [J]. Trends in Biotechnology, 2002, 20(6): 243-248. doi: 10.1016/S0167-7799(02)01943-1
[74] GILEWICZ M, NADALIG T, BUDZINSKI H, et al. Isolation and characterization of a marine bacterium capable of utilizing 2-methylphenanthrene [J]. Applied Microbiology and Biotechnology, 1997, 48(4): 528-533. doi: 10.1007/s002530051091
[75] SABATÉ J, GRIFOLL M, VIÑAS M, et al. Isolation and characterization of a 2-methylphenanthrene utilizing bacterium: Identification of ring cleavage metabolites [J]. Applied Microbiology and Biotechnology, 1999, 52(5): 704-712. doi: 10.1007/s002530051582
[76] SHA S, ZHONG J N, CHEN B W, et al. Novosphingobium guangzhouense sp. nov., with the ability to degrade 1-methylphenanthrene [J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(2): 489-497. doi: 10.1099/ijsem.0.001669
[77] WANG X W, CAI T, WEN W T, et al. Surfactin for enhanced removal of aromatic hydrocarbons during biodegradation of crude oil [J]. Fuel, 2020, 267: 117272. doi: 10.1016/j.fuel.2020.117272
[78] NADALIG T, RAYMOND N, GILEWICZ M, et al. Development of a protocol to study aerobic bacterial degradation of polycyclic aromatic hydrocarbons: Application to phenanthrenes [J]. Polycyclic Aromatic Compounds, 2000, 18(2): 177-192. doi: 10.1080/10406630008028144
[79] ROWLAND S J, ALEXANDER R, KAGI R I, et al. Microbial degradation of aromatic components of crude oils: A comparison of laboratory and field observations [J]. Organic Geochemistry, 1986, 9(4): 153-161. doi: 10.1016/0146-6380(86)90065-3
[80] BUDZINSKI H, NADALIG T, RAYMOND N, et al. Evidence of two metabolic pathways for degradation of 2-methylphenanthrene by Sphingomonas sp. strain (2mpii) [J]. Environmental Toxicology and Chemistry, 2000, 19(11): 2672. doi: 10.1002/etc.5620191109
[81] KELLEY I, FREEMAN J P, CERNIGLIA C E. Identification of metabolites from degradation of naphthalene by a Mycobacterium sp [J]. Biodegradation, 1990, 1(4): 283-290. doi: 10.1007/BF00119765
[82] 曹晓星, 田蕴, 胡忠, 等. PAHs降解基因及降解酶研究进展 [J]. 生态学杂志, 2007, 26(6): 917-924. doi: 10.3321/j.issn:1000-4890.2007.06.026 CAO X X, TIAN Y, HU Z, et al. Research progress in PAHs degradation genes and enzymes [J]. Chinese Journal of Ecology, 2007, 26(6): 917-924(in Chinese). doi: 10.3321/j.issn:1000-4890.2007.06.026
[83] BUTLER C S, MASON J R. Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases [J]. Advances in Microbial Physiology, 1996, 38: 47-84.
[84] JIANG H, PARALES R E, LYNCH N A, et al. Site-directed mutagenesis of conserved amino acids in the alpha subunit of toluene dioxygenase: Potential mononuclear non-heme iron coordination sites [J]. Journal of Bacteriology, 1996, 178(11): 3133-3139. doi: 10.1128/jb.178.11.3133-3139.1996
[85] LANGE S J, QUE L Jr. Oxygen activating nonheme iron enzymes [J]. Current Opinion in Chemical Biology, 1998, 2(2): 159-172. doi: 10.1016/S1367-5931(98)80057-4
[86] SANAKIS Y, MAMMA D, CHRISTAKOPOULOS P, et al. Catechol 1, 2-dioxygenase from Pseudomonas putida in organic media—an electron paramagnetic resonance study [J]. International Journal of Biological Macromolecules, 2003, 33(1/2/3): 101-106.
[87] TØNDERVIK A, BRUHEIM P, BERG L, et al. Ralstonia sp U2 naphthalene dioxygenase and Comamonas sp JS765 nitrobenzene dioxygenase show differences in activity towards methylated naphthalenes [J]. Journal of Bioscience and Bioengineering, 2012, 113(2): 173-178. doi: 10.1016/j.jbiosc.2011.10.001
[88] FANG T T, PAN R S, JIANG J, et al. Effect of salinity on community structure and naphthalene dioxygenase gene diversity of a halophilic bacterial consortium [J]. Frontiers of Environmental Science & Engineering, 2016, 10(6): 1-8.
[89] BEN SAID O, GOÑI-URRIZA M S, EL BOUR M, et al. Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments, Tunisia [J]. Journal of Applied Microbiology, 2008, 104(4): 987-997. doi: 10.1111/j.1365-2672.2007.03621.x
[90] OKUTA A, OHNISHI K, YAGAME S, et al. Intersubunit interaction and catalytic activity of catechol 2, 3-dioxygenases[J]. The Biochemical Journal, 2003, 371(Pt 2): 557-564.
[91] CRUTCHER S E, GEARY P J. Properties of the iron–sulphur proteins of the benzene dioxygenase system from Pseudomonas putida [J]. Biochemical Journal, 1979, 177(2): 393-400. doi: 10.1042/bj1770393
[92] YEH W K, GIBSON D T, LIU T N. Toluene dioxygenase: A multicomponent enzyme system [J]. Biochemical and Biophysical Research Communications, 1977, 78(1): 401-410. doi: 10.1016/0006-291X(77)91268-2
[93] 张丹, 李兆格, 包新光, 等. 细菌降解萘、菲的代谢途径及相关基因的研究进展 [J]. 生物工程学报, 2010, 26(6): 726-734. doi: 10.13345/j.cjb.2010.06.011 ZHANG D, LI Z G, BAO X G, et al. Recent advances in bacterial biodegradation of naphthalene, phenanthrene by bacteria: A review [J]. Chinese Journal of Biotechnology, 2010, 26(6): 726-734(in Chinese). doi: 10.13345/j.cjb.2010.06.011
[94] HABE H, OMORI T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria [J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(2): 225-243. doi: 10.1271/bbb.67.225
[95] HARAYAMA S, REKIK M, WASSERFALLEN A, et al. Evolutionary relationships between catabolic pathways for aromatics: Conservation of gene order and nucleotide sequences of catechol oxidation genes of pWW0 and NAH7 plasmids [J]. Molecular and General Genetics MGG, 1987, 210(2): 241-247. doi: 10.1007/BF00325689
[96] ZYLSTRA G J, KIM E, GOYAL A K. Comparative molecular analysis of genes for polycyclic aromatic hydrocarbon degradation [J]. Genetic Engineering, 1997, 19: 257-269. doi: 10.1007/978-1-4615-5925-2_14
[97] SAITO A, IWABUCHI T, HARAYAMA S. A novel phenanthrene dioxygenase from Nocardioides sp Strain KP7: Expression in Escherichia coli. [J]. Journal of Bacteriology, 2000, 182(8): 2134-2141. doi: 10.1128/JB.182.8.2134-2141.2000
[98] LAURIE A D, LLOYD-JONES G. The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism [J]. Journal of Bacteriology, 1999, 181(2): 531-540. doi: 10.1128/JB.181.2.531-540.1999
[99] 张维荣, 严康, 汪海珍, 等. 基于1983—2019年文献计量对多环芳烃降解基因研究及进展的剖析 [J]. 环境科学学报, 2020, 40(3): 1138-1148. doi: 10.13671/j.hjkxxb.2019.0359 ZHANG W R, YAN K, WANG H Z, et al. Bibliometric analysis of research progress on polycyclic aromatic hydrocarbons-degrading genes during 1983—2019 [J]. Acta Scientiae Circumstantiae, 2020, 40(3): 1138-1148(in Chinese). doi: 10.13671/j.hjkxxb.2019.0359
[100] KULAKOV L A, CHEN S C, ALLEN C C R, et al. Web-type evolution of Rhodococcus gene clusters associated with utilization of naphthalene [J]. Applied and Environmental Microbiology, 2005, 71(4): 1754-1764. doi: 10.1128/AEM.71.4.1754-1764.2005
[101] LARKIN M J, KULAKOV L A, ALLEN C C. Biodegradation and Rhodococcus - Masters of catabolic versatility [J]. Current Opinion in Biotechnology, 2005, 16(3): 282-290. doi: 10.1016/j.copbio.2005.04.007
[102] KUMARI S, REGAR R K, BAJAJ A, et al. Simultaneous biodegradation of polyaromatic hydrocarbons by a Stenotrophomonas sp: Characterization of nid genes and effect of surfactants on degradation [J]. Indian Journal of Microbiology, 2017, 57(1): 60-67. doi: 10.1007/s12088-016-0612-6
[103] KIM S J, KWEON O, JONES R C, et al. Complete and integrated Pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology [J]. Journal of Bacteriology, 2007, 189(2): 464-472. doi: 10.1128/JB.01310-06
[104] PAGNOUT C, FRACHE G, POUPIN P, et al. Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp. strain SNP11: Expression in Mycobacterium smegmatis mc2155 [J]. Research in Microbiology, 2007, 158(2): 175-186. doi: 10.1016/j.resmic.2006.11.002
[105] KRIVOBOK S, KUONY S, MEYER C, et al. Identification of Pyrene-induced proteins in Mycobacterium sp strain 6PY1: Evidence for two ring-hydroxylating dioxygenases [J]. Journal of Bacteriology, 2003, 185(13): 3828-3841. doi: 10.1128/JB.185.13.3828-3841.2003
[106] WU M Y, KWOK Y H, ZHANG Y G, et al. Synergetic effect of vacuum ultraviolet photolysis and ozone catalytic oxidation for toluene degradation over MnO2-rGO composite catalyst [J]. Chemical Engineering Science, 2021, 231: 116288. doi: 10.1016/j.ces.2020.116288
[107] BURLAGE R S, HOOPER S W, SAYLER G S. The TOL (pWW0) catabolic plasmid [J]. Applied and Environmental Microbiology, 1989, 55(6): 1323-1328. doi: 10.1128/aem.55.6.1323-1328.1989
[108] NIKEL P I, SILVA-ROCHA R, BENEDETTI I, et al. The private life of environmental bacteria: Pollutant biodegradation at the single cell level [J]. Environmental Microbiology, 2014, 16(3): 628-642. doi: 10.1111/1462-2920.12360
[109] WOLFE M D, ALTIER D J, STUBNA A, et al. Benzoate 1, 2-dioxygenase from Pseudomonas putida:   single turnover kinetics and regulation of a two-component rieske dioxygenase [J]. Biochemistry, 2002, 41(30): 9611-9626. doi: 10.1021/bi025912n
[110] NEIDLE E, HARTNETT C, ORNSTON L N, et al. Cis-diol dehydrogenases encoded by the TOL pWW0 plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily [J]. European Journal of Biochemistry, 1992, 204(1): 113-120. doi: 10.1111/j.1432-1033.1992.tb16612.x
[111] EATON R W. P-Cymene catabolic pathway in Pseudomonas putida F1: Cloning and characterization of DNA encoding conversion of p-cymene to p-cumate [J]. Journal of Bacteriology, 1997, 179(10): 3171-3180. doi: 10.1128/jb.179.10.3171-3180.1997
[112] SUHARA K, TAKEMORI S, KATAGIRI M. The purification and properties of benzylalcohol dehydrogenase from Pseudomonas SP [J]. Archives of Biochemistry and Biophysics, 1969, 130: 422-429. doi: 10.1016/0003-9861(69)90054-X
[113] MECKENSTOCK R U, SAFINOWSKI M, GRIEBLER C. Anaerobic degradation of polycyclic aromatic hydrocarbons [J]. FEMS Microbiology Ecology, 2004, 49(1): 27-36. doi: 10.1016/j.femsec.2004.02.019
[114] PÉREZ-JIMÉNEZ J R, YOUNG L Y, KERKHOF L J. Molecular characterization of sulfate-reducing bacteria in anaerobic hydrocarbon-degrading consortia and pure cultures using the dissimilatory sulfite reductase (dsrAB) genes [J]. FEMS Microbiology Ecology, 2001, 35(2): 145-150. doi: 10.1111/j.1574-6941.2001.tb00798.x