[1] |
JIN L, ZHANG G, TIAN H. Current state of sewage treatment in China[J]. Water Research, 2014, 66: 85-98. doi: 10.1016/j.watres.2014.08.014
|
[2] |
KOWALSKI M S, DEVLIN T R, DI BIASE A, et al. Effective nitrogen removal in a two-stage partial nitritation-anammox reactor treating municipal wastewater - Piloting PN-MBBR/AMX-IFAS configuration[J]. Bioresource Technology, 2019, 289: 121742. doi: 10.1016/j.biortech.2019.121742
|
[3] |
ZHANG Q H, YANG W N, NGO H H, et al. Current status of urban wastewater treatment plants in China[J]. Environment International, 2016, 92-93: 11-22. doi: 10.1016/j.envint.2016.03.024
|
[4] |
WINKLER M K, STRAKA L. New directions in biological nitrogen removal and recovery from wastewater[J]. Current Opinion in Biotechnology, 2019, 57: 50-5. doi: 10.1016/j.copbio.2018.12.007
|
[5] |
ALI M, OKABE S. Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues[J]. Chemosphere, 2015, 141: 144-53. doi: 10.1016/j.chemosphere.2015.06.094
|
[6] |
WAKI M, YASUDA T, FUKUMOTO Y, et al. Effect of electron donors on anammox coupling with nitrate reduction for removing nitrogen from nitrate and ammonium[J]. Bioresource Technology, 2013, 130: 592-598. doi: 10.1016/j.biortech.2012.12.101
|
[7] |
CHI Y, SHI X, JIN P, et al. Enhanced nitrogen removal by partial nitrification-anammox process with a novel high-frequency micro-aeration (HFMA) mode: Metabolic interactions among functional bacteria[J]. Bioresource Technology, 2021, 342: 125917. doi: 10.1016/j.biortech.2021.125917
|
[8] |
张肖静, 张涵, 周月, 等. 亚硝化-厌氧氨氧化工艺的启动及微生物种群演替规律研究[J]. 轻工学报, 2019, 34(6): 56-63.
|
[9] |
LU W, ZHANG Y, WANG Q, et al. Achieving advanced nitrogen removal in a novel partial denitrification/anammox-nitrifying (PDA-N) biofilter process treating low C/N ratio municipal wastewater[J]. Bioresource Technology, 2021, 340: 125661. doi: 10.1016/j.biortech.2021.125661
|
[10] |
LIU Y J, GU J, LIU Y. Energy self-sufficient biological municipal wastewater reclamation: Present status, challenges and solutions forward[J]. Bioresource Technology, 2018, 269: 513-9. doi: 10.1016/j.biortech.2018.08.104
|
[11] |
MA B, WANG S, CAO S, et al. Biological nitrogen removal from sewage via anammox: Recent advances[J]. Bioresource Technology, 2016: 200981-90.
|
[12] |
LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences: An application survey[J]. Water Research, 2014, 55: 292-303. doi: 10.1016/j.watres.2014.02.032
|
[13] |
KUENEN J G. ANAMMOX bacteria: From discovery to application[J]. Nature Reviews Microbiology, 2008, 6(4): 320-326. doi: 10.1038/nrmicro1857
|
[14] |
赖城, 张大超, PHILIP A, 等. 短程反硝化/厌氧氨氧化工艺研究进展[J]. 环境污染与防治, 2021, 43(11): 1452-1459.
|
[15] |
DU R, PENG Y, JI J, et al. Partial denitrification providing nitrite: Opportunities of extending application for anammox[J]. Environment International, 2019, 131: 105001. doi: 10.1016/j.envint.2019.105001
|
[16] |
MA B, XU X, WEI Y, et al. Recent advances in controlling denitritation for achieving denitratation/anammox in mainstream wastewater treatment plants[J]. Bioresource Technology, 2020, 299: 122697. doi: 10.1016/j.biortech.2019.122697
|
[17] |
CAO X, QIAN D, MENG X. Effects of pH on nitrite accumulation during wastewater denitrification[J]. Environment International, 2013, 34(1-4): 45-51.
|
[18] |
DU R, PENG Y, CAO S, et al. Mechanisms and microbial structure of partial denitrification with high nitrite accumulation[J]. Applied Microbiology and Biotechnology, 2016, 100(4): 2011-21. doi: 10.1007/s00253-015-7052-9
|
[19] |
毕春雪, 于德爽, 杜世明, 等. 乙酸钠作为碳源不同污泥源短程反硝化过程亚硝酸盐积累特性[J]. 环境科学, 2019, 40(2): 783-790.
|
[20] |
董晓莹, 彭党聪. 不同碳氮比下污水反硝化过程中亚硝氮积累的特性研究[J]. 环境科学学报, 2017, 37(9): 3349-3355.
|
[21] |
SI Z, PENG Y, YANG A, et al. Rapid nitrite production via partial denitrification: pilot-scale operation and microbial community analysis[J]. Environmental Science:Water Research & Technology, 2018, 4(1): 80-86.
|
[22] |
张星星, 王超超, 王垚, 等. 基于不同废污泥源的短程反硝化快速启动及稳定性[J]. 环境科学, 2020, 41(8): 3715-3724.
|
[23] |
DU R, CAO S, ZHANG H, et al. Formation of partial-denitrification (PD) granular sludge from low-strength nitrate wastewater: The influence of loading rates[J]. Journal of Hazardous Materials, 2020, 384: 121273. doi: 10.1016/j.jhazmat.2019.121273
|
[24] |
申慧彦, 汪河, 姚亮, 等. 硝酸盐对短程反硝化过程中亚硝酸盐积累影响[J]. 环境科学与技术, 2021, 44(5): 1-7.
|
[25] |
SHENG H, WENG R, ZHU J, et al. Calcium nitrate as a bio-stimulant for anaerobic ammonium oxidation process[J]. Science of the Total Environment, 2021, 760: 143331. doi: 10.1016/j.scitotenv.2020.143331
|
[26] |
FERNANDEZ-NAVA Y, MARANON E, SOONS J, et al. Denitrification of wastewater containing high nitrate and calcium concentrations[J]. Bioresource Technology, 2008, 99(17): 7976-81. doi: 10.1016/j.biortech.2008.03.048
|
[27] |
王衫允, 贾方旭, 高梦佳, 等. 不同基因水平的厌氧氨氧化污泥功能微生物特性[J]. 中国给水排水, 2016, 32(13): 96-101.
|
[28] |
QIAN W, MA B, LI X, et al. Long-term effect of pH on denitrification: High pH benefits achieving partial-denitrification[J]. Bioresource Technology, 2019, 278: 444-9. doi: 10.1016/j.biortech.2019.01.105
|
[29] |
娄红春, 林青山, 高敏杰, 等. 钙离子对污泥系统脱氮的影响及恢复研究[J]. 淮阴工学院学报, 2018, 27(1): 41-45. doi: 10.3969/j.issn.1009-7961.2018.01.008
|
[30] |
周昌琴, 孔秀琴, 陈磊, 等. PESA对高钙废水中污泥酶活性的影响[J]. 环境工程学报, 2017, 11(4): 2212-2218. doi: 10.12030/j.cjee.201602033
|
[31] |
滕李军. SBR法处理磷源缺乏模拟污水的试验研究[D]. 沈阳: 沈阳建筑大学, 2014.
|
[32] |
CAO S, DU R, LI B, et al. Nitrite production from partial-denitrification process fed with low carbon/nitrogen (C/N) domestic wastewater: performance, kinetics and microbial community[J]. Chemical Engineering Journal, 2017, 326: 1186-96. doi: 10.1016/j.cej.2017.06.066
|
[33] |
KINDAICHI T, YURI S, OZAKI N, et al. Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor[J]. Water Science and Technology, 2012, 66(12): 2556-61. doi: 10.2166/wst.2012.479
|
[34] |
ZHOU L, DONG N, YE B, et al. Assessing effects of Ca(2+) addition on membrane bioreactor performance and macro-floc sludge characteristics[J]. Science of the Total Environment, 2021, 798: 149223. doi: 10.1016/j.scitotenv.2021.149223
|
[35] |
王晗, 李瀚翔, 陈猷鹏, 等. 盐度条件下ANAMMOX-EGSB反应器颗粒污泥微生物群落[J]. 环境科学, 2019, 40(4): 1906-1913. doi: 10.13227/j.hjkx.201809072
|
[36] |
HU M, WANG X, WEN X, et al. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis[J]. Bioresource Technology, 2012, 117: 72-9. doi: 10.1016/j.biortech.2012.04.061
|
[37] |
VILAR-SANZ A, POUS N, PUIG S, et al. Denitrifying nirK-containing alphaproteobacteria exhibit different electrode driven nitrite reduction capacities[J]. Bioelectrochemistry, 2018, 121: 74-83. doi: 10.1016/j.bioelechem.2018.01.007
|
[38] |
ZHANG Q, ZHANG C, ZHU Y, et al. Effect of bacteria-to-algae volume ratio on treatment performance and microbial community of a novel heterotrophic nitrification-aerobic denitrification bacteria-chlorella symbiotic system[J]. Bioresource Technology, 2021, 342: 126025. doi: 10.1016/j.biortech.2021.126025
|
[39] |
SONG H, LIU J. Forward osmosis membrane bioreactor using bacillus and membrane distillation hybrid system for treating dairywastewater[J]. Environmental Technology, 2021, 42(12): 1943-1954. doi: 10.1080/09593330.2019.1684568
|
[40] |
HAN F, ZHANG M, LIU Z, et al. Enhancing robustness of halophilic aerobic granule sludge by granular activated carbon at decreasing temperature[J]. Chemosphere, 2022, 292: 133507. doi: 10.1016/j.chemosphere.2021.133507
|
[41] |
ZHANG Z, YU Z, WANG Z, et al. Understanding of aerobic sludge granulation enhanced by sludge retention time in the aspect of quorum sensing[J]. Bioresource Technology, 2019, 272: 226-34. doi: 10.1016/j.biortech.2018.10.027
|
[42] |
HANKE A, BERG J, HARGESHEIMER T, et al. Selective pressure of temperature on competition and cross-feeding within denitrifying and fermentative microbial communities[J]. Frontiers in Microbiology, 2015, 6: 1461.
|
[43] |
NGUYEN N H A, EL-TEMSAH Y S, CAMBIER S, et al. Attached and planktonic bacterial communities on bio-based plastic granules and micro-debris in seawater and freshwater[J]. Science of the Total Environment, 2021: 147413.
|
[44] |
邝斌宇, 史青, MONTCHO L M, 等. A/O MBR处理生活污水效率与菌群多样性的关系[J]. 环境科学, 2012, 33(6): 2061-2067.
|
[45] |
ROMANO S, SCHULZ-VOGT H N, GONZALEZ J M, et al. Phosphate limitation induces drastic physiological changes, virulence-related gene expression, and secondary metabolite production in Pseudovibrio sp. strain FO-BEG1[J]. Applied and Environmental Microbiology, 2015, 81(10): 3518-28. doi: 10.1128/AEM.04167-14
|
[46] |
WANG Z, HE S, HUANG J, et al. Comparison of heterotrophic and autotrophic denitrification processes for nitrate removal from phosphorus-limited surface water[J]. Environmental Pollution, 2018, 238: 562-72. doi: 10.1016/j.envpol.2018.03.080
|
[47] |
SHI L, DU R, PENG Y. Achieving partial denitrification using carbon sources in domestic wastewater with waste-activated sludge as inoculum[J]. Bioresource Technology, 2019, 283: 18-27. doi: 10.1016/j.biortech.2019.03.063
|