[1] |
SHI T R, ZHANG Y Y, GONG Y W, et al. Status of cadmium accumulation in agricultural soils across China (1975–2016): From temporal and spatial variations to risk assessment[J]. Chemosphere, 2019, 230: 136-143. doi: 10.1016/j.chemosphere.2019.04.208
|
[2] |
WATANABE Y, NOGAWA K, NISHIJO M, et al. Relationship between cancer mortality and environmental cadmium exposure in the general Japanese population in cadmium non-polluted areas[J]. International Journal of Hygiene and Environmental Health, 2020, 223(1): 65-70. doi: 10.1016/j.ijheh.2019.10.005
|
[3] |
ASHRAF S, ALI Q, ZAHIR Z A, et al. Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils[J]. Ecotoxicology and Environmental Safety, 2019, 174: 714-727. doi: 10.1016/j.ecoenv.2019.02.068
|
[4] |
BHATTACHARYYA P N, JHA D K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture[J]. World Journal of Microbiology and Biotechnology, 2012, 28(4): 1327-1350. doi: 10.1007/s11274-011-0979-9
|
[5] |
GUO J K, MUHAMMAD H, LV X, et al. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review[J]. Chemosphere, 2020, 246: 125823. doi: 10.1016/j.chemosphere.2020.125823
|
[6] |
ABBASZADEH P, OMIDVARI M, GHORBANPOUR M. Increasing Phytoremediation Efficiency of Heavy Metal-Contaminated Soil using PGPR for Sustainable Agriculture[M]//CHOUDHARY D, VARMA A, TUTEJA N. Plant-microbe Interaction: An Approach to Sustainable Agriculture. Singapore: Springer, 2016: 187-204.
|
[7] |
沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 2015, 35(20): 6584-6591.
|
[8] |
MESA J, DEL-SAZ N F, RODRÍGUEZ I D, et al. PGPR reduce root respiration and oxidative stress enhancing spartina maritima root growth and heavy metal rhizoaccumulation[J]. Frontiers in plant science, 2018, 9: 1500-1500. doi: 10.3389/fpls.2018.01500
|
[9] |
LIU W, WANG Q, WANG B, et al. Plant growth-promoting rhizobacteria enhance the growth and Cd uptake of Sedum plumbizincicola in a Cd-contaminated soil[J]. Journal of Soils and Sediments, 2015, 15(5): 1191-1199. doi: 10.1007/s11368-015-1067-9
|
[10] |
KAMRAN M A, SYED J H, EQANI S A M A S, et al. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa[J]. Environmental Science and Pollution Research, 2015, 22(12): 9275-9283. doi: 10.1007/s11356-015-4074-x
|
[11] |
郭军康, 董明芳, 丁永祯, 等. 根际促生菌影响植物吸收和转运重金属的研究进展[J]. 生态环境学报, 2015, 24(7): 1228-1234.
|
[12] |
段桂兰, 崔慧灵, 杨雨萍, 等. 重金属污染土壤中生物间相互作用及其协同修复应用[J]. 生物工程学报, 2020, 36(3): 455-470.
|
[13] |
刘莉华, 刘淑杰, 陈福明, 等. 两株镉抗性奇异变形杆菌对龙葵修复镉污染土壤的强化作用[J]. 环境工程学报, 2013, 7(10): 4109-4115.
|
[14] |
王东升, 王立立, 李取生, 等. 产铁载体菌对龙葵修复土壤 Cd 污染的促进效应[J]. 环境工程学报, 2018, 12(8): 2311-2319.
|
[15] |
LOBO C B, JUÁREZ TOMÁS M S, VIRUEL E, et al. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies[J]. Microbiological Research, 2019, 219: 12-25. doi: 10.1016/j.micres.2018.10.012
|
[16] |
VEJAN P, KHADIRAN T, ABDULLAH R, et al. Encapsulation of plant growth promoting rhizobacteria-prospects and potential in agricultural sector: A review[J]. Journal of Plant Nutrition, 2019, 42(19): 2600-2623. doi: 10.1080/01904167.2019.1659330
|
[17] |
GEORGE M, ABRAHAM T E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-A review[J]. Journal of Controlled Release, 2006, 114(1): 1-14. doi: 10.1016/j.jconrel.2006.04.017
|
[18] |
TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017
|
[19] |
SCHOEBITZ M, SIMONIN H, PONCELET D. Starch filler and osmoprotectants improve the survival of rhizobacteria in dried alginate beads[J]. Journal of Microencapsulation, 2012, 29(6): 532-538. doi: 10.3109/02652048.2012.665090
|
[20] |
MORGAN C A, HERMAN N, WHITE P A, et al. Preservation of micro-organisms by drying:A review[J]. Journal of Microbiological Methods, 2006, 66(2): 183-193. doi: 10.1016/j.mimet.2006.02.017
|
[21] |
BERNINGER T, GONZÁLEZ LÓPEZ Ó, BEJARANO A, et al. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants[J]. Microbial Biotechnology, 2018, 11(2): 277-301. doi: 10.1111/1751-7915.12880
|
[22] |
YUN Y J, WU H W, GAO J, et al. Facile synthesis of Ca2+-crosslinked sodium alginate/graphene oxide hybrids as electro-and pH-responsive drug carrier[J]. Materials Science and Engineering:C, 2020, 108: 110380. doi: 10.1016/j.msec.2019.110380
|
[23] |
ZHENG W J, ZENG S Q, BAIS H, et al. Plant growth-promoting rhizobacteria (PGPR) reduce evaporation and increase soil water retention[J]. Water Resources Research, 2018, 54(5): 3673-3687. doi: 10.1029/2018WR022656
|
[24] |
PAUL E. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization[J]. Soil Biology and Biochemistry, 2016, 98: 109-126. doi: 10.1016/j.soilbio.2016.04.001
|
[25] |
ANJUM N, HASANUZZAMAN M, HOSSAIN M, et al. Jacks of metal/metalloid chelation trade in plants-An overview[J]. Frontiers in Plant Science, 2015, 6: 192-192.
|
[26] |
KARI A, NAGYMÁTÉ Z, ROMSICS C, et al. Evaluating the combined effect of biochar and PGPR inoculants on the bacterial community in acidic sandy soil[J]. Applied Soil Ecology, 2021, 160: 103856. doi: 10.1016/j.apsoil.2020.103856
|
[27] |
SCHMIDT S, EISENHUT M, SCHNEIDER A. Chloroplast transition metal regulation for efficient photosynthesis[J]. Trends in Plant Science, 2020, 25(8): 817-828. doi: 10.1016/j.tplants.2020.03.003
|
[28] |
ESITKEN A, YILDIZ H E, ERCISLI S, et al. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry[J]. Scientia Horticulturae, 2010, 124(1): 62-66. doi: 10.1016/j.scienta.2009.12.012
|
[29] |
HIDER R C, KONG X. Chemistry and biology of siderophores[J]. Natural Product Reports, 2010, 27(5): 637-657. doi: 10.1039/b906679a
|
[30] |
GU S, WEI Z, SHAO Z, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology, 2020, 5(8): 1002-1010. doi: 10.1038/s41564-020-0719-8
|
[31] |
BERG G, RYBAKOVA D, FISCHER D, et al. Microbiome definition re-visited: Old concepts and new challenges[J]. Microbiome, 2020, 8(1): 103. doi: 10.1186/s40168-020-00875-0
|
[32] |
朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康[J]. 中国科学:生命科学, 2021, 51(1): 1-11.
|
[33] |
BOURGEOIS C, ALFARO A C, DENCER-BROWN A, et al. Stocks and soil-plant transfer of macro-nutrients and trace metals in temperate New Zealand estuarine mangroves[J]. Plant and Soil, 2019, 436(1): 565-586.
|
[34] |
龚小敏, 刘云国, 黄丹莲, 等. 外源钙对镉胁迫下苎麻生长及生理代谢的影响[J]. 环境工程学报, 2016, 10(7): 3866-3870.
|
[35] |
HE X L, FAN S K, ZHU J, et al. Iron supply prevents Cd uptake in Arabidopsis by inhibiting IRT1 expression and favoring competition between Fe and Cd uptake[J]. Plant and Soil, 2017, 416(1): 453-462.
|
[36] |
CLEMENS S, PALMGREN M G, KRÄMER U. A long way ahead: Understanding and engineering plant metal accumulation[J]. Trends in Plant Science, 2002, 7(7): 309-315. doi: 10.1016/S1360-1385(02)02295-1
|
[37] |
QIAO K, GONG L, TIAN Y, et al. The metal-binding domain of wheat heavy metal ATPase 2 (TaHMA2) is involved in zinc/cadmium tolerance and translocation in Arabidopsis[J]. Plant Cell Reports, 2018, 37(9): 1343-1352. doi: 10.1007/s00299-018-2316-3
|
[38] |
WILLIAMS L E, PITTMAN J K, HALL J L. Emerging mechanisms for heavy metal transport in plants[J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2000, 1465(1): 104-126.
|
[39] |
HUANG S, SASAKI A, YAMAJI N, et al. The ZIP transporter family member OsZIP9 contributes to root zinc uptake in rice under zinc-limited conditions[J]. Plant Physiology, 2020, 183(3): 1224-1234. doi: 10.1104/pp.20.00125
|
[40] |
KORSHUNOVA Y O, EIDE D, GREGG CLARK W, et al. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range[J]. Plant Molecular Biology, 1999, 40(1): 37-44. doi: 10.1023/A:1026438615520
|
[41] |
PEDAS P, YTTING C K, FUGLSANG A T, et al. Manganese efficiency in barley: Identification and characterization of the metal ion transporter HvIRT1[J]. Plant Physiology, 2008, 148(1): 455-466. doi: 10.1104/pp.108.118851
|
[42] |
WU D, YAMAJI N, YAMANE M, et al. The HvNramp5 transporter mediates uptake of cadmium and manganese, but not iron[J]. Plant Physiology, 2016, 172(3): 1899-1910. doi: 10.1104/pp.16.01189
|