[1] |
YUAN Y C, LIU J D, et al. Ozone direct oxidation pretreatment and catalytic oxidation post-treatment coupled with ABMBR for landfill leachate treatment[J]. Science of the Total Environment, 2021, 794(1-4): 148557.
|
[2] |
LI R W, LI L, ZHANG Z M, et al. Limiting factors of heavy metals removal during anaerobic biological pretreatment of municipal solid waste landfill leachate[J]. Journal of Hazardous Materials, 2021, 416: 126081. doi: 10.1016/j.jhazmat.2021.126081
|
[3] |
DAIANA S, HELOISE Q, ROSANGELA B, et al. Presence of endocrine disrupting chemicals in sanitary landfill leachate, its treatment and degradation by Fenton based processes: A review[J]. Process Safety and Environmental Protection, 2019, 131(C): 255-267.
|
[4] |
CHEN G Y, WU G Y, LI N, et al. Landfill leachate treatment by persulphate related advanced oxidation technologies[J]. Journal of Hazardous Materials, 2021, 418(4): 126355.
|
[5] |
GAO M, LI S Q, ZOU H J, et al. Aged landfill leachate enhances anaerobic digestion of waste activated sludge[J]. Journal of Environmental Management, 2021, 293(2/3): 112853.
|
[6] |
LOPEZ A, PAGANO M, VOLPE A, et al. Fenton's pre-treatment of mature landfill leachate[J]. Chemosphere, 2004, 54(7): 1005-1010. doi: 10.1016/j.chemosphere.2003.09.015
|
[7] |
SILVA L, ALVESl V M, DANTAS E, et al. Chemical safety assessment of transformation products of landfill leachate formed during the Fenton process[J]. Journal of Hazardous Materials, 2021, 419(80): 126438.
|
[8] |
ZHOU Y R, HUANG K Y, JIAO X Y, et al. Anaerobic co-digestion of organic fractions of municipal solid waste: Synergy study of methane production and microbial community[J]. Biomass and Bioenergy, 2021, 151: 106137. doi: 10.1016/j.biombioe.2021.106137
|
[9] |
RESHADI M, HASANI S S, NAZARIPOUR M, et al. The evolving trends of landfill leachate treatment research over the past 45 years.[J]. Environmental Science and Pollution Research International, 2021, 28(47): 1-19.
|
[10] |
ATE H, ARGUN M E. Advanced oxidation of landfill leachate: Removal of micropollutants and identification of by-products[J]. Journal of Hazardous Materials, 2021, 413(5): 125326.
|
[11] |
JIANG N, HUANG L, HUANG M H, et al. Electricity generation and pollutants removal of landfill leachate by osmotic microbial fuel cells with different forward osmosis membranes[J]. Sustainable Environment Research, 2021, 31(1): 22. doi: 10.1186/s42834-021-00095-7
|
[12] |
SHI L, CHEN H X, MENG H L, et al. How environmental policy impacts technology adoption: A case of landfill leachate[J]. Journal of Cleaner Production, 2021, 310: 127484. doi: 10.1016/j.jclepro.2021.127484
|
[13] |
LEBRON Y, MOREIRA V R, BRASIL Y L, et al. A survey on experiences in leachate treatment: Common practices, differences worldwide and future perspectives[J]. Journal of Environmental Management, 2021, 288: 112475. doi: 10.1016/j.jenvman.2021.112475
|
[14] |
GHANBARI F, KHATEBASREH M, MAHDAVIANPOUR M, et al. Evaluation of peroxymonosulfate/O3/UV process on a real polluted water with landfill leachate: Feasibility and comparative study[J]. Korean Journal of Chemical Engineering, 2021, 38(7): 1416-1424. doi: 10.1007/s11814-021-0782-8
|
[15] |
柳伟. 我国垃圾渗滤液处理现状探究[J]. 生物化工, 2021, 7(6): 3. doi: 10.3969/j.issn.2096-0387.2021.06.043
|
[16] |
吴娜, 薛晓莉, 张志立, 等. 微纳米气泡技术在环保领域的应用研究进展[J]. 现代农业科技, 2020(17): 154-155+160. doi: 10.3969/j.issn.1007-5739.2020.17.096
|
[17] |
刘畅, 唐玉朝, 王品之. 微纳米气泡在治理水体污染方面的应用研究[J]. 安徽建筑大学学报, 2020, 28(03): 6.
|
[18] |
WU Y F, LIN H, YIN W Z, et al. Water quality and microbial community changes in an urban river after micro-nano bubble technology in situ treatment[J]. Water, 2019, 11(1): 66. doi: 10.3390/w11010066
|
[19] |
HUAMING, HE, LIANG. Research on the feasibility of spraying micro/nano bubble ozonated water for airborne disease prevention[J]. Ozone:Science & Engineering, 2015, 37(1): 78-84.
|
[20] |
SHARIFUZZAMAN, M. D, YANG H N, Park S M. Park, et al. Performance comparison of micro-nano bubble, electro-oxidation and ozone pre-treatment in reducing fluoride from industrial wastewater[J]. Engineering in Agriculture, Environment and Food, 2017, 10(3): S1881836617300216.
|
[21] |
李恒震, 胡黎明, 辛鸿博. 微纳米气泡技术应用于污染地下水原位修复研究[J]. 岩土工程学报, 2015, 37(S2): 115-120. doi: 10.11779/CJGE2015S2023
|
[22] |
吕宙, 从善畅, 程婷, 等. 微纳米气泡曝气技术在生活污水处理中的应用研究[J]. 广州化工, 2014, 42(7): 4. doi: 10.3969/j.issn.1001-9677.2014.07.046
|
[23] |
DAYARATHNE H, CHOI J, JANG A. Enhancement of cleaning-in-place (CIP) of a reverse osmosis desalination process with air micro-nano bubbles[J]. Desalination, 2017, 422: 1-4. doi: 10.1016/j.desal.2017.08.002
|
[24] |
杨世迎, 杨鑫, 王萍, 等. 过硫酸盐高级氧化技术的活化方法研究进展[J]. 现代化工, 2009, 29(4): 13-19. doi: 10.3321/j.issn:0253-4320.2009.04.004
|
[25] |
LUO Y T, SU R K, YAO H S, et al. Degradation of trimethoprim by sulfate radical-based advanced oxidation processes: kinetics, mechanisms, and effects of natural water matrices.[J]. Environmental Science and Pollution Research International, 2021, 28(44): 62572-62582. doi: 10.1007/s11356-021-15146-0
|
[26] |
LU Y T, SHEN Y L, ZHANG S F, et al. Enhancement of removal of VOCs and odors from wood by microwave-activated persulfate.[J]. ACS Omega, 2021, 6(8): 5945-5952. doi: 10.1021/acsomega.1c00126
|
[27] |
GUO J Y, GAO Q F, YANG S Q, et al. Degradation of pyrene in contaminated water and soil by Fe2+-activated persulfate oxidation: Performance, kinetics, and background electrolytes (Cl-, HCO3- and humic acid) effects.[J]. Process Safety and Environmental Protection, 2021, 146: 686-693. doi: 10.1016/j.psep.2020.12.003
|
[28] |
张国珍, 王宏伟, 李晓燕, 等. 紫外活化过硫酸盐降解水中阿莫西林的特性[J]. 中国给水排水, 2021, 37(19): 53-59. doi: 10.19853/j.zgjsps.1000-4602.2021.19.009
|
[29] |
徐朋飞, 郭怡秦, 王光辉, 等. 紫外活化过硫酸盐对甲基橙脱色处理实验研究[J]. 环境工程, 2017, 35(11): 5. doi: 10.13205/j.hjgc.201711013
|
[30] |
NASSERI S, MAHVI A H, SEYEDSALEHI M, et al. Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: Effect of radical scavenger and water matrix[J]. Journal of Molecular Liquids, 2017: 704-714.
|