[1] |
郝吉明, 马广大, 王书肖. 大气污染控制工程[J]. 北京:高等教育出版社, 2010: 389-404.
|
[2] |
唐晓龙, 郝吉明, 徐文国, 等. 固定源低温选择性催化还原NOx技术研究进展[J]. 环境科学学报, 2005, 25(10): 1297-1305. doi: 10.3321/j.issn:0253-2468.2005.10.002
|
[3] |
BUSCA G, LARRUBIA M A, ARRIGHI L, et al. Catalytic abatement of NOx: Chemical and mechanistic aspects[J]. Catalysis Today, 2005, 107/108: 139-148. doi: 10.1016/j.cattod.2005.07.077
|
[4] |
梁海龙, 吴彦霞, 霍艳丽. 低温SCR脱硝催化剂实现需求”量身定制”[J]. 中国建材, 2018, 426(06): 125-126.
|
[5] |
张文伯,苏伟,邢奕. 工业烟气选择性催化氧化脱硝催化剂研究进展[C]//.《环境工程》2019年全国学术年会论文集,2019:219-224.
|
[6] |
JIN R B, LIU Y, WU Z B, et al. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: A comparative study[J]. Chemosphere, 2010, 78(9): 1160-1166. doi: 10.1016/j.chemosphere.2009.11.049
|
[7] |
STANCIULESCU M, CARAVAGGIO G, DOBRI A, et al. Low-temperature selective catalytic reduction of NOx with NH3 over Mn-containing catalysts[J]. Applied Catalysis B Environmental, 2012, 123/124(23): 229-240.
|
[8] |
REN S, YANG J, ZHANG T S, et al. Role of cerium in improving NO reduction with NH3, over Mn–Ce/ASC catalyst in low-temperature flue gas[J]. Chemical Engineering Research and Design, 2018, 133: 1-10. doi: 10.1016/j.cherd.2018.02.041
|
[9] |
QI N Y, DAN H J, LI X H. Effect of Cu Doping on the SCR Activity of Mn‒Ce/ATP Catalyst[J]. Russian Journal of Applied Chemistry, 2018, 91(1): 136-142. doi: 10.1134/S1070427218010214
|
[10] |
WANG C, YU F, ZHU M Y, et al. Highly selective catalytic reduction of NOx by MnOx–CeO2–Al2O3 catalysts prepared by self-propagating high-temperature synthesis[J]. Journal of Environmental Sciences, 2019, 75(01): 127-138.
|
[11] |
XU Q, YANG W J, CUI S T, et al. Sulfur resistance of Ce-Mn/TiO2 catalysts for low-temperature NH3-SCR[J]. Royal Society Open Science, 2018, 5(3): 171846. doi: 10.1098/rsos.171846
|
[12] |
贺丽芳, 刘建东, 黄伟, 等. 制备方法对Mn-Ce/ZSM-5催化剂低温选择性催化还原NO性能的影响[J]. 高等学校化学学报, 2012, 33(11): 2532-2536. doi: 10.7503/cjcu20120079
|
[13] |
廖伟平, 杨柳, 王飞, 等. 不同制备方法的Mn-Ce催化剂低温SCR性能研究[J]. 化学学报, 2011, 69(22): 2723-2728.
|
[14] |
SHEN B X, ZHANG X P, Ma H Q, et al. A comparative study of Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2 for low temperature selective catalytic reduction of NO with NH3 in the presence of SO2 and H2O[J]. Journal of Environmental Sciences, 2013, 25(4): 791-800.
|
[15] |
LI X, LI Y. Selective catalytic reduction of NO with NH3 over Ce-Mo-Ox catalyst[J]. Catalysis Letters, 2014, 144(1): 165-171. doi: 10.1007/s10562-013-1103-6
|
[16] |
闫东杰, 李亚静, 玉亚, 等. 碱金属沉积对Mn-Ce/TiO2低温SCR催化剂性能影响[J]. 燃料化学学报, 2018, 46(12): 116-122.
|
[17] |
YAMAMOTO A, TERAMURA K, HOSOKAWA S, et al. Effects of SO2 on selective catalytic reduction of NO with NH3 over a TiO2 photocatalyst[J]. Science & Technology of Advanced Materials, 2015, 16(2): 1-7.
|
[18] |
CENTENO M A, CARRIZOSA I, ODIRIOZOLA J A. NO-NH3 coad sorption on vanadia titania catalysts: determination of the reduction degree of vanadium[J]. Applied Catalysis B:Environmental, 2001, 29(4): 307-314. doi: 10.1016/S0926-3373(00)00214-9
|
[19] |
汪洋. NO气体在TiO2表面的吸附行为[J]. 化学学报, 2006, 64(15): 1611-1614. doi: 10.3321/j.issn:0567-7351.2006.15.017
|
[20] |
ANDREOLI S, DEORSOLA F A, PIRONE R. MnOx-CeO2 catalysts synthesized by solution combustion synthesis for the low-temperature NH3-SCR[J]. Catalysis Today, 2015, 253: 199-206. doi: 10.1016/j.cattod.2015.03.036
|
[21] |
WAN Y P, ZHAO W R, TANG Y, et al. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3[J]. Applied Catalysis B Environmental, 2014, s 148/149(6): 114-122.
|
[22] |
黄继辉, 童华, 童志权, 等. H2O和SO2对Mn-Fe/MPS催化剂用于NH3低温还原NO的影响[J]. 过程工程学报, 2008, 8(16): 517-522.
|
[23] |
WANG X, ZHENG Y Y, XU Z, et al. Amorphous MnO2 supported on carbon nanotubes as a superior catalyst for low temperature NO reduction with NH3[J]. RSC Advances, 2013, 3(29): 11539-11542. doi: 10.1039/c3ra41512k
|
[24] |
POURKHALIL M, MOGHADDAM A Z, RASHIDI A, et al. Preparation of highly active manganese oxides supported on functionalized MWNTs for low temperature NOx reduction with NH3[J]. Applied Surface Science, 2013, 279(Complete): 250-259.
|
[25] |
PAPARAZZO E. Some notes on XPS Mn2p and Ce3d spectra of MnOx-Ceria catalysts[J]. Catalysis Today, 2012, 185(1): 319-321. doi: 10.1016/j.cattod.2012.02.014
|
[26] |
WU Z B, JIN R B, LIU Y, et al. Ceria modified MnO2/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catalysis Communications, 2008, 9: 2217-2220. doi: 10.1016/j.catcom.2008.05.001
|
[27] |
KAPTEIJN F, SINGOREDJO L, ANDREINI A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Cazal B, 1994, 3(2-3): 173. doi: 10.1016/0926-3373(93)E0034-9
|
[28] |
YE Q, ZHAO J S, HUO F F, et al. Nanosized Ag/α-MnO2 catalysts highly active for the low-temperature oxidation of carbon monoxide and benzene[J]. Catalysis Today, 2011, 175(1): 603-609. doi: 10.1016/j.cattod.2011.04.008
|
[29] |
JARRIGE. J, Vervisch. P. Plasma-enhanced catalysis of propane and isopropy l alcohol at ambient temperature on a MnO2-based catalyst[J]. Applied Catalysis B:Environmental, 2009, 90(1): 74-82.
|