[1] YANG Y, ZHANG C, LAI C, et al. BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management [J]. Advances in Colloid and Interface Science, 2018, 254: 76-93. doi: 10.1016/j.cis.2018.03.004
[2] PARE B, SARWAN B, JONNALAGADDA S B. Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition [J]. Applied Surface Science, 2011, 258(1): 247-253. doi: 10.1016/j.apsusc.2011.08.040
[3] FU J, TIAN Y L, CHANG B B, et al. BiOBr-carbon nitride heterojunctions: Synthesis, enhanced activity and photocatalytic mechanism [J]. Journal of Materials Chemistry, 2012, 22(39): 21159-21166. doi: 10.1039/c2jm34778d
[4] XIAO X, ZHANG W D. Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity [J]. Journal of Materials Chemistry, 2010, 20(28): 5866-5870. doi: 10.1039/c0jm00333f
[5] GU Y Y, XIONG Y Q, ZHANG X X, et al. Facile synthesis of hierarchical BiOClxBr1-x solid solution with enhanced photocatalytic activity [J]. Journal of Central South University, 2018, 25(7): 1619-1627. doi: 10.1007/s11771-018-3854-0
[6] XIAN D S, YANG J J, YU X, et al. In situ grown hierarchical 50%BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B [J]. Applied Surface Science, 2018, 433: 502-512. doi: 10.1016/j.apsusc.2017.09.258
[7] CAI L, ZHANG G Q, ZHANG Y F, et al. Mediation of band structure for BiOBrxI1–x hierarchical microspheres of multiple defects with enhanced visible-light photocatalytic activity [J]. CrystEngComm, 2018, 20(26): 3647-3656. doi: 10.1039/C8CE00700D
[8] ZHANG W D, ZHANG Q, DONG F. Visible-light photocatalytic removal of NO in air over BiOX (X = cl, br, I) single-crystal nanoplates prepared at room temperature [J]. Industrial & Engineering Chemistry Research, 2013, 52(20): 6740-6746.
[9] KANDANAPITIYE M S, GAO M, MOLTER J, et al. Synthesis, characterization, and X-ray attenuation properties of ultrasmall BiOI nanoparticles: Toward renal clearable particulate CT contrast agents [J]. Inorganic Chemistry, 2014, 53(19): 10189-10194. doi: 10.1021/ic5011709
[10] YAN X D, ZHAO H M, LI T F, et al. In situ synthesis of BiOCl nanosheets on three-dimensional hierarchical structures for efficient photocatalysis under visible light [J]. Nanoscale, 2019, 11(21): 10203-10208. doi: 10.1039/C9NR02304F
[11] LIU F Y, JIANG Y R, CHEN C C, et al. Novel synthesis of PbBiO2Cl/BiOCl nanocomposite with enhanced visible-driven-light photocatalytic activity [J]. Catalysis Today, 2018, 300: 112-123. doi: 10.1016/j.cattod.2017.04.030
[12] AGGARWAL R, SAINI D, SINGH B, et al. Bitter apple peel derived photoactive carbon dots for the sunlight induced photocatalytic degradation of crystal violet dye [J]. Solar Energy, 2020, 197: 326-331. doi: 10.1016/j.solener.2020.01.010
[13] MATOS I, BERNARDO M, FONSECA I. Porous carbon: A versatile material for catalysis [J]. Catalysis Today, 2017, 285: 194-203. doi: 10.1016/j.cattod.2017.01.039
[14] LI M, HUANG H W, YU S X, et al. Simultaneously promoting charge separation and photoabsorption of BiOX (X = Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar [J]. Applied Surface Science, 2016, 386: 285-295. doi: 10.1016/j.apsusc.2016.05.171
[15] JI Q Y, CHENG X Y, SUN D Y, et al. Persulfate enhanced visible light photocatalytic degradation of iohexol by surface-loaded perylene diimide/acidified biochar [J]. Chemical Engineering Journal, 2021, 414: 128793. doi: 10.1016/j.cej.2021.128793
[16] NA Y, KIM Y I, WON CHO D, et al. Adsorption/photocatalytic performances of hierarchical flowerlike BiOBrxCl1−x nanostructures for methyl orange, Rhodamine B and methylene blue [J]. Materials Science in Semiconductor Processing, 2014, 27: 181-190. doi: 10.1016/j.mssp.2014.06.043
[17] ZHU N Y, YAN T M, QIAO J, et al. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization [J]. Chemosphere, 2016, 164: 32-40. doi: 10.1016/j.chemosphere.2016.08.036
[18] BERA K K, MAJUMDAR R, CHAKRABORTY M, et al. Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B under natural sunlight [J]. Journal of Hazardous Materials, 2018, 352: 182-191. doi: 10.1016/j.jhazmat.2018.03.029
[19] AHMED I, JHUNG S H. Applications of metal-organic frameworks in adsorption/separation processes via hydrogen bonding interactions [J]. Chemical Engineering Journal, 2017, 310: 197-215. doi: 10.1016/j.cej.2016.10.115
[20] 卢涛, 刘国, 李春雪, 等. BiOCl/SiO2/Fe3O4复合材料可见光催化去除水中亚甲基蓝 [J]. 环境科学学报, 2019, 39(2): 352-358. LU T, LIU G, LI C X, et al. Photocatalytic degradation of methylene blue in water by BiOCl/SiO2/Fe3O4 composites [J]. Acta Scientiae Circumstantiae, 2019, 39(2): 352-358(in Chinese).
[21] 盛寒祯, 尤宏, 柳锋, 等. 可见光驱动下氧掺杂氮化碳活化过硫酸盐降解罗丹明B [J]. 环境科学学报, 2020, 40(8): 2708-2714. doi: 10.13671/j.hjkxxb.2020.0143 SHENG H Z, YOU H, LIU F, et al. Degradation of Rhodamine B by persulfate activated by oxygen-doped carbon nitride under visible light irradation [J]. Acta Scientiae Circumstantiae, 2020, 40(8): 2708-2714(in Chinese). doi: 10.13671/j.hjkxxb.2020.0143
[22] JIANG Y R, LIN H P, CHUNG W H, et al. Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet [J]. Journal of Hazardous Materials, 2015, 283: 787-805. doi: 10.1016/j.jhazmat.2014.10.025
[23] XIAO X, XING C L, HE G P, et al. Solvothermal synthesis of novel hierarchical Bi4O5I2 nanoflakes with highly visible light photocatalytic performance for the degradation of 4-tert-butylphenol [J]. Applied Catalysis B:Environmental, 2014, 148/149: 154-163. doi: 10.1016/j.apcatb.2013.10.055