[1] GENG H, XU Y, ZHENG L K, et al. An overview of removing heavy metals from sewage sludge: Achievements and perspectives [J]. Environmental Pollution, 2020, 266: 115375. doi: 10.1016/j.envpol.2020.115375
[2] WANG L P, CHANG Y Z, LI A M. Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review [J]. Renewable and Sustainable Energy Reviews, 2019, 108: 423-440. doi: 10.1016/j.rser.2019.04.011
[3] YANG G, ZHANG G M, WANG H C. Current state of sludge production, management, treatment and disposal in China [J]. Water Research, 2015, 78: 60-73. doi: 10.1016/j.watres.2015.04.002
[4] NGO P L, UDUGAMA I A, GERNAEY K V, et al. Mechanisms, status, and challenges of thermal hydrolysis and advanced thermal hydrolysis processes in sewage sludge treatment [J]. Chemosphere, 2021, 281: 130890. doi: 10.1016/j.chemosphere.2021.130890
[5] SHARMA H B, SARMAH A K, DUBEY B. Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar [J]. Renewable and Sustainable Energy Reviews, 2020, 123: 109761. doi: 10.1016/j.rser.2020.109761
[6] GAO N B, KAMRAN K, QUAN C, et al. Thermochemical conversion of sewage sludge: A critical review [J]. Progress in Energy and Combustion Science, 2020, 79: 100843. doi: 10.1016/j.pecs.2020.100843
[7] WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: A review [J]. Journal of Cleaner Production, 2019, 227: 1002-1022. doi: 10.1016/j.jclepro.2019.04.282
[8] LI Y H, CHANG F M, HUANG B, et al. Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage [J]. Fuel, 2020, 266: 117053. doi: 10.1016/j.fuel.2020.117053
[9] YUE Y, CUI L, LIN Q M, et al. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth [J]. Chemosphere, 2017, 173: 551-556. doi: 10.1016/j.chemosphere.2017.01.096
[10] STREIT A F M, CÔRTES L N, DRUZIAN S P, et al. Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions [J]. Science of the Total Environment, 2019, 660: 277-287. doi: 10.1016/j.scitotenv.2019.01.027
[11] W D C U, VEKSHA A, GIANNIS A, et al. Insights into the speciation of heavy metals during pyrolysis of industrial sludge [J]. Science of the Total Environment, 2019, 691: 232-242. doi: 10.1016/j.scitotenv.2019.07.095
[12] WANG X D, CHI Q Q, LIU X J, et al. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge [J]. Chemosphere, 2019, 216: 698-706. doi: 10.1016/j.chemosphere.2018.10.189
[13] CHEN F F, HU Y Y, DOU X M, et al. Chemical forms of heavy metals in pyrolytic char of heavy metal-implanted sewage sludge and their impacts on leaching behaviors [J]. Journal of Analytical and Applied Pyrolysis, 2015, 116: 152-160. doi: 10.1016/j.jaap.2015.09.015
[14] JIN J W, LI Y N, ZHANG J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge [J]. Journal of Hazardous Materials, 2016, 320: 417-426. doi: 10.1016/j.jhazmat.2016.08.050
[15] HUANG H J, YUAN X Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge [J]. Bioresource Technology, 2016, 200: 991-998. doi: 10.1016/j.biortech.2015.10.099
[16] JIN J W, WANG M Y, CAO Y C, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals [J]. Bioresource Technology, 2017, 228: 218-226. doi: 10.1016/j.biortech.2016.12.103
[17] LI Z J, DENG H, YANG L, et al. Influence of potassium hydroxide activation on characteristics and environmental risk of heavy metals in chars derived from municipal sewage sludge [J]. Bioresource Technology, 2018, 256: 216-223. doi: 10.1016/j.biortech.2018.02.013
[18] SAKAN S, POPOVIĆ A, ŠKRIVANJ S, et al. Comparison of single extraction procedures and the application of an index for the assessment of heavy metal bioavailability in river sediments [J]. Environmental Science and Pollution Research, 2016, 23(21): 21485-21500. doi: 10.1007/s11356-016-7341-6
[19] GABARRÓN M, ZORNOZA R, MARTÍNEZ-MARTÍNEZ S, et al. Effect of land use and soil properties in the feasibility of two sequential extraction procedures for metals fractionation [J]. Chemosphere, 2019, 218: 266-272. doi: 10.1016/j.chemosphere.2018.11.114
[20] HE L Z, ZHONG H, LIU G X, et al. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China [J]. Environmental Pollution, 2019, 252: 846-855. doi: 10.1016/j.envpol.2019.05.151
[21] LEGROS S, LEVARD C, MARCATO-ROMAIN C E, et al. Anaerobic digestion alters copper and zinc speciation [J]. Environmental Science & Technology, 2017, 51(18): 10326-10334.
[22] HUANG R X, ZHANG B, SAAD E M, et al. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges [J]. Water Research, 2018, 132: 260-269. doi: 10.1016/j.watres.2018.01.009
[23] LIU Y C, LIU Q, CHEN M Y, et al. Evaluation of migration of heavy metals and performance of product during co-pyrolysis process of municipal sewage sludge and walnut shell [J]. Environmental Science and Pollution Research, 2017, 24(27): 22082-22090. doi: 10.1007/s11356-017-9858-8
[24] REN J, DAI L, TAO L. Stabilization of heavy metals in sewage sludge by attapulgite [J]. Journal of the Air & Waste Management Association, 2021, 71(3): 392-399.
[25] LIU T T, LIU Z G, ZHENG Q F, et al. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis [J]. Bioresource Technology, 2018, 247: 282-290. doi: 10.1016/j.biortech.2017.09.090
[26] ADAR E, KARATOP B, İNCE M, et al. Comparison of methods for sustainable energy management with sewage sludge in Turkey based on SWOT-FAHP analysis [J]. Renewable and Sustainable Energy Reviews, 2016, 62: 429-440. doi: 10.1016/j.rser.2016.05.007
[27] KATARZYNA I. The impact of sewage sludge treatment on the content of selected heavy metals and their fractions [J]. Environmental Research, 2017, 156: 19-22. doi: 10.1016/j.envres.2017.02.035
[28] ZHAO B, XU X Y, XU S C, et al. Surface characteristics and potential ecological risk evaluation of heavy metals in the bio-char produced by co-pyrolysis from municipal sewage sludge and hazelnut shell with zinc chloride [J]. Bioresource Technology, 2017, 243: 375-383. doi: 10.1016/j.biortech.2017.06.032
[29] CHEN Z, YU G W, WANG Y, et al. Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process [J]. Waste Management, 2020, 109: 28-37. doi: 10.1016/j.wasman.2020.04.048
[30] ZHANG Z Y, JU R, ZHOU H T, et al. Migration characteristics of heavy metals during sludge pyrolysis [J]. Waste Management, 2021, 120: 25-32. doi: 10.1016/j.wasman.2020.11.018
[31] CHEN G Y, TIAN S, LIU B, et al. Stabilization of heavy metals during co-pyrolysis of sewage sludge and excavated waste [J]. Waste Management, 2020, 103: 268-275. doi: 10.1016/j.wasman.2019.12.031
[32] LIU Y, RAN C M, SIDDIQUI A R, et al. Characterization and analysis of sludge char prepared from bench-scale fluidized bed pyrolysis of sewage sludge [J]. Energy, 2020, 200: 117398. doi: 10.1016/j.energy.2020.117398
[33] YU M, ZHANG J, TIAN Y. Change of heavy metal speciation, mobility, bioavailability, and ecological risk during potassium ferrate treatment of waste-activated sludge [J]. Environmental Science and Pollution Research, 2018, 25(14): 13569-13578. doi: 10.1007/s11356-018-1511-7
[34] QIU C S, BI Y, ZHENG J X, et al. Effect of ozonation treatment on the chemical speciation distributions of heavy metals in sewage sludge and subsequent bioleaching process [J]. Environmental Science and Pollution Research, 2020, 27(16): 19946-19954. doi: 10.1007/s11356-020-08539-0
[35] CHEN Z, YU G W, WANG Y, et al. Research on synergistically hydrothermal treatment of municipal solid waste incineration fly ash and sewage sludge [J]. Waste Management, 2019, 100: 182-190. doi: 10.1016/j.wasman.2019.09.006
[36] KHADHAR S, SDIRI A, CHEKIRBEN A, et al. Integration of sequential extraction, chemical analysis and statistical tools for the availability risk assessment of heavy metals in sludge amended soils [J]. Environmental Pollution, 2020, 263: 114543. doi: 10.1016/j.envpol.2020.114543
[37] ZHAO B, XU X Y, ZENG F Q, et al. The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(II) adsorption kinetics [J]. Environmental Science and Pollution Research, 2018, 25(20): 19423-19435. doi: 10.1007/s11356-018-2079-y
[38] LI B B, DING S X, FAN H H, et al. Experimental investigation into the effect of pyrolysis on chemical forms of heavy metals in sewage sludge biochar (SSB), with brief ecological risk assessment [J]. Materials, 2021, 14(2): 447. doi: 10.3390/ma14020447
[39] LU T, YUAN H R, WANG Y Z, et al. Characteristic of heavy metals in biochar derived from sewage sludge [J]. Journal of Material Cycles and Waste Management, 2016, 18(4): 725-733. doi: 10.1007/s10163-015-0366-y
[40] WANG Z P, SHU X Q, ZHU H N, et al. Characteristics of biochars prepared by co-pyrolysis of sewage sludge and cotton stalk intended for use as soil amendments [J]. Environmental Technology, 2020, 41(11): 1347-1357. doi: 10.1080/09593330.2018.1534891
[41] ZHANG J, JIN J W, WANG M Y, et al. Co-pyrolysis of sewage sludge and rice husk/ bamboo sawdust for biochar with high aromaticity and low metal mobility [J]. Environmental Research, 2020, 191: 110034. doi: 10.1016/j.envres.2020.110034
[42] CHEN J C, ZHANG J H, LIU J Y, et al. Co-pyrolytic mechanisms, kinetics, emissions and products of biomass and sewage sludge in N2, CO2 and mixed atmospheres [J]. Chemical Engineering Journal, 2020, 397: 125372. doi: 10.1016/j.cej.2020.125372
[43] WANG X D, LI C X, LI Z W, et al. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge [J]. Ecotoxicology and Environmental Safety, 2019, 168: 45-52. doi: 10.1016/j.ecoenv.2018.10.022
[44] HAN H D, HU S, SYED-HASSAN S S A, et al. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis [J]. Bioresource Technology, 2017, 236: 138-145. doi: 10.1016/j.biortech.2017.03.112
[45] SINGH S, KUMAR V, DATTA S, et al. Current advancement and future prospect of biosorbents for bioremediation [J]. Science of the Total Environment, 2020, 709: 135895. doi: 10.1016/j.scitotenv.2019.135895
[46] DOU X M, CHEN D Z, HU Y Y, et al. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal [J]. Journal of Hazardous Materials, 2017, 321: 132-145. doi: 10.1016/j.jhazmat.2016.09.010
[47] RAHEEM A, SIKARWAR V S, HE J, et al. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review [J]. Chemical Engineering Journal, 2018, 337: 616-641. doi: 10.1016/j.cej.2017.12.149
[48] XU X W, JIANG E C. Treatment of urban sludge by hydrothermal carbonization [J]. Bioresource Technology, 2017, 238: 182-187. doi: 10.1016/j.biortech.2017.03.174
[49] WANG X D, LI C X, ZHANG B, et al. Migration and risk assessment of heavy metals in sewage sludge during hydrothermal treatment combined with pyrolysis [J]. Bioresource Technology, 2016, 221: 560-567. doi: 10.1016/j.biortech.2016.09.069
[50] LI C X, XIE S Y, WANG Y, et al. Simultaneous heavy metal immobilization and antibiotics removal during synergetic treatment of sewage sludge and pig manure [J]. Environmental Science and Pollution Research, 2020, 27(24): 30323-30332. doi: 10.1007/s11356-020-09230-0
[51] ŚWIERCZEK L, CIEŚLIK B M, KONIECZKA P. The potential of raw sewage sludge in construction industry—A review [J]. Journal of Cleaner Production, 2018, 200: 342-356. doi: 10.1016/j.jclepro.2018.07.188
[52] WENG H X, MA X W, FU F X, et al. Transformation of heavy metal speciation during sludge drying: Mechanistic insights [J]. Journal of Hazardous Materials, 2014, 265: 96-103. doi: 10.1016/j.jhazmat.2013.11.051
[53] HE J, STREZOV V, KAN T, et al. Effect of temperature on heavy metal(loid) deportment during pyrolysis of Avicennia marina biomass obtained from phytoremediation [J]. Bioresource Technology, 2019, 278: 214-222. doi: 10.1016/j.biortech.2019.01.101
[54] WANG Z P, LIU K, XIE L K, et al. Effects of residence time on characteristics of biochars prepared via co-pyrolysis of sewage sludge and cotton stalks [J]. Journal of Analytical and Applied Pyrolysis, 2019, 142: 104659. doi: 10.1016/j.jaap.2019.104659
[55] 许思涵, 王敏艳, 张进, 等. 热解时间对污泥炭特性及其重金属生态风险水平的影响 [J]. 环境工程, 2020, 38(03): 162-167. doi: 10.13205/j.hjgc.202003027 XU S H, WANG M Y, ZHANG J, et al. Effect of pyrolysis time on characteristics and heavy metal ecological risks in biochar made from wastewater sludge [J]. Environmental Engineering, 2020, 38(03): 162-167(in Chinese). doi: 10.13205/j.hjgc.202003027
[56] 刁韩杰. 不同热解条件对污泥炭特性及重金属行为的影响[D]. 杭州: 浙江农林大学, 2019. DIAO H J. Effects of different pyrolysis conditions on carbon characteristics and heavy metal behavior of sludge[D]. Hangzhou: Zhejiang Agriculture & Forestry University, 2019(in Chinese).
[57] NAEIMEH V, LARSERIK Å, AURéLIE C, et al. Pyrolysis of municipal sewage sludge to investigate char and phosphorous yield together with heavy-metal removal—experimental and by thermodynamic calculations [J]. Energies, 2021, 14(5): 1477. doi: 10.3390/en14051477
[58] HUANG H J, YANG T, LAI F Y, et al. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar [J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 61-68. doi: 10.1016/j.jaap.2017.04.018
[59] ZHOU Y, LIU Y Z, JIANG W B, et al. Effects of pyrolysis temperature and addition proportions of corncob on the distribution of products and potential energy recovery during the preparation of sludge activated carbon [J]. Chemosphere, 2019, 221: 175-183. doi: 10.1016/j.chemosphere.2019.01.026
[60] YANG Y Q, CUI M H, REN Y G, et al. Towards Understanding the Mechanism of Heavy Metals Immobilization in Biochar Derived from Co-pyrolysis of Sawdust and Sewage Sludge [J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(4): 489-496. doi: 10.1007/s00128-020-02801-4
[61] XIE S Y, YU G W, LI C X, et al. Treatment of high-ash industrial sludge for producing improved char with low heavy metal toxicity [J]. Journal of Analytical and Applied Pyrolysis, 2020, 150: 104866. doi: 10.1016/j.jaap.2020.104866
[62] 蔡尽忠, 李火金, 邓盈. 玉米秸秆与污泥混合热解对生物碳特性及重金属的影响(英文) [J]. 农业工程学报, 2020, 36(6): 239-245. CAI J Z, LI H J, DENG Y. Effects of maize stovers and sewage sludge co-pyrolysis on characteristics and heavy metals in biochar [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 239-245(in Chinese).
[63] GONG Z Q, LIU C, WANG M, et al. Experimental study on catalytic pyrolysis of oil sludge under mild temperature [J]. Science of the Total Environment, 2020, 708: 135039. doi: 10.1016/j.scitotenv.2019.135039
[64] WANG Z P, XIE L K, LIU K, et al. Co-pyrolysis of sewage sludge and cotton stalks [J]. Waste Management, 2019, 89: 430-438. doi: 10.1016/j.wasman.2019.04.033
[65] WANG Z P, WANG J, XIE L K, et al. Influence of the addition of cotton stalk during Co-pyrolysis with sewage sludge on the properties, surface characteristics, and ecological risks of biochars [J]. Journal of Thermal Science, 2019, 28(4): 755-762. doi: 10.1007/s11630-019-1100-1
[66] FAN J P, LI Y, YU H Y, et al. Using sewage sludge with high ash content for biochar production and Cu(Ⅱ) sorption [J]. Science of the Total Environment, 2020, 713: 136663. doi: 10.1016/j.scitotenv.2020.136663
[67] RAJAPAKSHA A U, VITHANAGE M, AHMAD M, et al. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar [J]. Journal of Hazardous Materials, 2015, 290: 43-50. doi: 10.1016/j.jhazmat.2015.02.046
[68] XIAO X, CHEN B L, ZHU L Z. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures [J]. Environmental Science & Technology, 2014, 48(6): 3411-3419.
[69] JINDO K, MIZUMOTO H, SAWADA Y, et al. Physical and chemical characterization of biochars derived from different agricultural residues [J]. Biogeosciences, 2014, 11(23): 6613-6621. doi: 10.5194/bg-11-6613-2014
[70] LIU L H, HUANG L, HUANG R, et al. Immobilization of heavy metals in biochar derived from co-pyrolysis of sewage sludge and calcium sulfate [J]. Journal of Hazardous Materials, 2021, 403: 123648. doi: 10.1016/j.jhazmat.2020.123648
[71] YANG P H, ZHOU P, LI Y, et al. Recent development in pyrolytic catalysts of oil sludge [J]. Petroleum Science and Technology, 2018, 36(7): 520-524. doi: 10.1080/10916466.2018.1431661
[72] SUN S C, HUANG X F, LIN J H, et al. Study on the effects of catalysts on the immobilization efficiency and mechanism of heavy metals during the microwave pyrolysis of sludge [J]. Waste Management, 2018, 77: 131-139. doi: 10.1016/j.wasman.2018.04.046
[73] HU H Y, LIU H, ZHANG Q, et al. Sintering characteristics of CaO-rich municipal solid waste incineration fly ash through the addition of Si/Al-rich ash residues [J]. Journal of Material Cycles and Waste Management, 2016, 18(2): 340-347. doi: 10.1007/s10163-014-0341-z
[74] GONG Z Q, LIU L, ZHANG H T, et al. Study on the migration characteristics of As, Pb, and Ni during oily sludge incineration with CaO additive [J]. Energy & Fuels, 2020, 34(12): 16341-16349.
[75] LI Y F, HONG C, WANG Z Q, et al. Fractal characteristics of biochars derived from Penicillin v potassium residue pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2019, 141: 104636. doi: 10.1016/j.jaap.2019.104636
[76] 汪刚, 余广炜, 谢胜禹, 等. 添加不同塑料与污泥混合热解对生物炭中重金属的影响 [J]. 燃料化学学报, 2019, 47(5): 611-620. doi: 10.3969/j.issn.0253-2409.2019.05.013 WANG G, YU G W, XIE S Y, et al. Effect of co-pyrolysis of different plastics with sewage sludge on heavy metals in the biochar [J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 611-620(in Chinese). doi: 10.3969/j.issn.0253-2409.2019.05.013
[77] LI J, YU G W, XIE S Y, et al. Immobilization of heavy metals in ceramsite produced from sewage sludge biochar [J]. Science of the Total Environment, 2018, 628-629: 131-140. doi: 10.1016/j.scitotenv.2018.02.036