[1] |
CARVALHO P N, BASTO M C P, ALMEIDA C M R, et al. A review of plant-pharmaceutical interactions: From uptake and effects in crop plants to phytoremediation in constructed wetlands[J]. Environmental Science and Pollution Research, 2014, 21(20): 11729-11763. doi: 10.1007/s11356-014-2550-3
|
[2] |
崔丽娟, 张岩, 赵欣胜, 等. 基于一级动力学模型的潜流湿地污染物去除研究[J]. 中国环境科学, 2011, 31(10): 1697-1704.
|
[3] |
VOHLA C, KOIV M, BAVOR H J, et al. Filter materials for phosphorus removal from wastewater in treatment wetlands: A review[J]. Ecological Engineering, 2011, 37(1): 70-89. doi: 10.1016/j.ecoleng.2009.08.003
|
[4] |
STEFANAKIS A I, TSIHRINTZIS V A. Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands[J]. Chemical Engineering Journal, 2012, 181: 416-430.
|
[5] |
LI M, LIANG Z L, CALLIER M D, et al. Nutrients removal and substrate enzyme activities in vertical subsurface flow constructed wetlands for mariculture wastewater treatment: Effects of ammonia nitrogen loading rates and salinity levels[J]. Marine Pollution Bulletin, 2018, 131: 142-150. doi: 10.1016/j.marpolbul.2018.04.013
|
[6] |
HUANG L, GAO X, GUO J S, et al. A review on the mechanism and affecting factors of nitrous oxide emission in constructed wetlands[J]. Environmental Earth Sciences, 2013, 68(8): 2171-2180. doi: 10.1007/s12665-012-1900-z
|
[7] |
YIN H B, YAN X W, GU X H. Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands[J]. Water Research, 2017, 115: 329-338. doi: 10.1016/j.watres.2017.03.014
|
[8] |
LIU M H, WU S B, LI C, DONG R J. How substrate influences nitrogen transformations in tidal flow constructed wetlands treating high ammonium wastewater?[J]. Ecological engineering:The Journal of Ecotechnology, 2014, 73: 478-486. doi: 10.1016/j.ecoleng.2014.09.111
|
[9] |
CHENG G, LI Q H, SU Z, et al. Preparation, optimization and application of sustainable ceramsite substrate from coal fly ash/waterworks sludge/oyster shell for phosphorus immobilization in constructed wetlands[J]. Journal of Cleaner Production, 2018, 175: 572-581. doi: 10.1016/j.jclepro.2017.12.102
|
[10] |
JIANG C, JIA L Y, ZHANG B, et al. Comparison of quartz sand, anthracite, shale and biological ceramsite for adsorptive removal of phosphorus from aqueous solution[J]. Journal of Environmental Sciences, 2014, 26(2): 466-477. doi: 10.1016/S1001-0742(13)60410-6
|
[11] |
BARAN W, ADAMEK E, ZIEMIANSKA J, et al. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials, 2011, 196: 1-15. doi: 10.1016/j.jhazmat.2011.08.082
|
[12] |
刘鹏霄, 王旭, 冯玲. 自然水环境中抗生素的污染现状、来源及危害研究进展[J]. 环境工程, 2020, 38(5): 36-42.
|
[13] |
WANG G G, ZHOU S H, HAN X K, et al. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing city, southwest China[J]. Journal of Hazardous Materials, 2020, 389: 122110. doi: 10.1016/j.jhazmat.2020.122110
|
[14] |
JIANG L, HU X L, YIN D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6): 822-828. doi: 10.1016/j.chemosphere.2010.11.028
|
[15] |
冀秀玲, 刘芳, 沈群辉, 等. 养殖场废水中磺胺类和四环素抗生素及其抗性基因的定量检测[J]. 生态环境学报, 2011, 20(5): 927-933. doi: 10.3969/j.issn.1674-5906.2011.05.025
|
[16] |
LI D, YANG M, HU J, et al. Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river[J]. Environmental Toxicology and Chemistry, 2008, 27: 80-86. doi: 10.1897/07-080.1
|
[17] |
徐后涛, 郑小燕, 王丽卿, 等. 水产养殖场抗生素类新型污染物减排示范工程研究成果[J]. 净水技术, 2020, 39(11): 59-62.
|
[18] |
国家环保局本书编委会. 水和废水监测分析方法[M]. 水和废水监测分析方法, 1989.
|
[19] |
董晓. 渔业养殖环境中抗生素残留检测及消除技术[D]. 上海: 上海海洋大学, 2017.
|
[20] |
RMA E, FBB C, EK A, et al. Light-expanded clay aggregate (LECA) as a substrate in constructed wetlands – A review[J]. Ecological Engineering, 2020, 148: 105783. doi: 10.1016/j.ecoleng.2020.105783
|
[21] |
LIN L, LIU C, ZHENG J, et al. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands[J]. Chemosphere, 2013, 91(8): 1088-93. doi: 10.1016/j.chemosphere.2013.01.007
|
[22] |
YANG Y Y, SONG W J, LIN H, DU L N, WEI X. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis[J]. Environment International, 2018, 116: 60-73. doi: 10.1016/j.envint.2018.04.011
|
[23] |
LIU X H, LU S Y, WEI G, et al. Antibiotics in the aquatic environments: A review of lakes, China[J]. Science of the Total Environment, 2018, 627(15): 1195-1208.
|
[24] |
董甜姿. 地下水中氮-磺胺类抗生素的微生物净化机理及技术研究[D]. 长春: 吉林大学, 2020.
|
[25] |
CONKLE J L, LATTAO C, WHITE J R, et al. Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil[J]. Chemosphere, 2010, 80(11): 1353-1359. doi: 10.1016/j.chemosphere.2010.06.012
|
[26] |
PAUL T, MILLER P L, STRATHMANN T J. Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents[J]. Environmental Science & Technology, 2007, 41(13): 4720-4727.
|
[27] |
方媛瑗, 戴国飞, 杨平, 等. 不同填料组合对污水中氮磷去除效果的研究[J]. 应用化工, 2020, 49(10): 2475-2477. doi: 10.3969/j.issn.1671-3206.2020.10.016
|
[28] |
CHEN J, YING G G, WEI X D, et al. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species[J]. Science of the Total Environment, 2016, 571: 974-982. doi: 10.1016/j.scitotenv.2016.07.085
|
[29] |
HE Y, ZHANG L, JIANG L, et al. Improving removal of antibiotics in constructed wetland treatment systems based on key design and operational parameters: A review[J]. Journal of Hazardous Materials, 2020, 407: 124386.
|
[30] |
DAN A, YANG Y, DAI Y N, et al. Removal and factors influencing removal of sulfonamides and trimethoprim from domestic sewage in constructed wetlands[J]. Bioresource Technology, 2013, 146(10): 363-370.
|
[31] |
WU S, KUSCHK P, BRIX H, et al. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review[J]. Water Research, 2014, 57(15): 40-55.
|
[32] |
AKRATOS C S, TSIHRINTZIS V A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of HSFCWs[J]. Ecological Engineering, 2007, 29: 173-191. doi: 10.1016/j.ecoleng.2006.06.013
|
[33] |
GUAN Y, WANG B, GAO Y, et al. Occurrence and fate of antibiotics in the aqueous environment and their removal by constructed wetlands in China: A review[J]. Pedosphere, 2017, 27(1): 42-51. doi: 10.1016/S1002-0160(17)60295-9
|
[34] |
JIANG Z, DU P, LIAO Y, et al. Oyster farming control on phytoplankton bloom promoted by thermal discharge from a power plant in a eutrophic, semi-enclosed bay[J]. Water Research, 2019, 159: 1-9. doi: 10.1016/j.watres.2019.04.023
|
[35] |
CONKLE J L, WHITE J R, METCALFE C D. Reduction of pharmaceutically active compounds by a lagoon wetland wastewater treatment system in Southeast Louisiana[J]. Chemosphere, 2008, 73(11): 1741-1748. doi: 10.1016/j.chemosphere.2008.09.020
|
[36] |
ZHANG S, SONG H L, YANG X L, et al. A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes[J]. Bioresource Technology, 2018, 256: 224-231. doi: 10.1016/j.biortech.2018.02.023
|
[37] |
LIU X H, GUO X C, LIU Y, LU S Y, et al. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: performance and microbial response[J]. Environmental Pollution, 2019, 254: 112996. doi: 10.1016/j.envpol.2019.112996
|
[38] |
MUELLER E, SCHUESSLER W, HORN H, et al. Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source[J]. Chemosphere, 2013, 92(8): 969-978. doi: 10.1016/j.chemosphere.2013.02.070
|
[39] |
HUANG X, LIU C X, LI K, SU J Q, et al. Performance of vertical up-flow constructed wetlands on swine wastewater containing tetracyclines and tet genes[J]. Water Research, 2015, 70: 109-117. doi: 10.1016/j.watres.2014.11.048
|
[40] |
TONG X, WANG X, HE X, et al. Effects of ofloxacin on nitrogen removal and microbial community structure in constructed wetland[J]. Science of the Total Environment, 2019, 656: 503-511. doi: 10.1016/j.scitotenv.2018.11.358
|
[41] |
WU Y, HAN R, YANG X, et al. Correlating microbial community with physicochemical indices and structures of a full-scale integrated constructed wetland system[J]. Applied Microbiology & Biotechnology, 2016, 100: 6917-6926.
|
[42] |
覃岚倩, 白少元, 张琴, 等. 人工湿地对抗生素复合污染的净化效果及微生物群落响应[J]. 生态学杂志, 2021, 40(2): 525-533.
|
[43] |
赵亚奇. A/O-MBR工艺对废水中抗生素的去除效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
[44] |
王兵, 温奋翔, 肖波. 模拟水体硝态氮对黄菖蒲生长及其氮吸收的影响[J]. 环境科学, 2016, 37(9): 3447-3452.
|