[1] KANG S, XING B S. Phenanthrene sorption to sequentially extracted soil humic acids and humins [J]. Environmental Science & Technology, 2005, 39(1): 134-140.
[2] LI F F, PAN B, LIANG N, et al. Reactive mineral removal relative to soil organic matter heterogeneity and implications for organic contaminant sorption [J]. Environmental Pollution, 2017, 227: 49-56. doi: 10.1016/j.envpol.2017.04.047
[3] LEINWEBER P, BLUMENSTEIN O, SCHULTEN H R. Organic matter composition in sewage farm soils: Investigations by 13C-NMR and pyrolysis-field ionization mass spectrometry [J]. European Journal of Soil Science, 2005, 47(1): 71-80.
[4] XING B. Sorption of naphthalene and phenanthrene by soil humic acids [J]. Environmental Pollution, 2001, 111(2): 303-309. doi: 10.1016/S0269-7491(00)00065-8
[5] KILE D E, WERSHAW R L, CHIOU C T. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds [J]. Environmental Science & Technology, 1999, 33(12): 2053-2056.
[6] HU W G, MAO J D, XING B S, et al. Poly(methylene) crystallites in humic substances detected by nuclear magnetic resonance [J]. Environmental Science & Technology, 2000, 34(3): 530-534.
[7] 王彦, 左宁, 姜媛媛, 等. 污泥生物炭中氮硫行为及环境效应研究进展 [J]. 化工进展, 2020, 39(4): 1539-1549. WANG Y, ZUO N, JIANG Y Y, et al. Behavior and environmental effects of nitrogen and sulfur in sludge biochar [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1539-1549(in Chinese).
[8] 张帆舸, 杨敏, 刘侃. 昆明滇池泥炭土物理指标相关性研究[J]. 建筑科学, 2020, 36(增刊1): 1-7. ZHANG F G, YANG M, LIU K. Study on the relevance between the physical parameters of peaty soils in Dianchi district of Kunming[J]. Building Science, 2020, 36(Sup 1): 1-7(in Chinese). Science, 2020, v. 36(S1): 8-14.
[9] OTTO A, SIMPSON M J. Analysis of soil organic matter biomarkers by sequential chemical degradation and gas chromatography-mass spectrometry [J]. Journal of Separation Science, 2007, 30(2): 272-282. doi: 10.1002/jssc.200600243
[10] SIMONEIT B R. A review of current applications of mass spectrometry for biomarker/molecular tracer elucidation [J]. Mass Spectrometry Reviews, 2005, 24(5): 719-765. doi: 10.1002/mas.20036
[11] LI F F, LIANG N, ZHANG P C, et al. Protection of extractable lipid and lignin: Differences in undisturbed and cultivated soils detected by molecular markers [J]. Chemosphere, 2018, 213: 314-322. doi: 10.1016/j.chemosphere.2018.09.043
[12] LIN L H, SIMPSON M J. Enhanced extractability of cutin- and suberin-derived organic matter with demineralization implies physical protection over chemical recalcitrance in soil [J]. Organic Geochemistry, 2016, 97: 111-121. doi: 10.1016/j.orggeochem.2016.04.012
[13] ZHANG D, PAN B, ZHANG H, et al. Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes [J]. Environmental Science & Technology, 2010, 44(10): 3806-3811.
[14] ZHANG J, TIAN Y, CUI Y N, et al. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: A protein model compound study [J]. Bioresource Technology, 2013, 132: 57-63. doi: 10.1016/j.biortech.2013.01.008
[15] KOLATTUKUDY P E, CROTEAU R, BUCKNER J S. Biochemistry of plant waxes [J]. Chemistry & Biochemistry of Natural Waxes, 1976: 290-349.
[16] OTTO A, SHUNTHIRASINGHAM C, SIMPSON M J. A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada [J]. Organic Geochemistry, 2005, 36(3): 425-448. doi: 10.1016/j.orggeochem.2004.09.008
[17] WIESENBERG G L B, DORODNIKOV M, KUZYAKOV Y. Source determination of lipids in bulk soil and soil density fractions after four years of wheat cropping [J]. Geoderma, 2010, 156(3/4): 267-277.
[18] TAMURA M, THARAYIL N. Plant litter chemistry and microbial priming regulate the accrual, composition and stability of soil carbon in invaded ecosystems [J]. New Phytologist, 2014, 203(1): 110-124. doi: 10.1111/nph.12795
[19] GUL S, YANNI S, WHALEN J K. Lignin controls on soil ecosystem services: Implications for biotechnological advances in biofuel crops[M]. Lignin: Structural analysis, applications in biomaterials and ecological significance, New York: Biochemistry Research Trends, Nova Science Publishers, 2014, 375-416. ISBN 978-1-56973-641-8.
[20] DING X D, BAO H Y, ZHENG L W, et al. Lacustrine lignin biomarker record reveals a severe drought during the late Younger Dryas in southern Taiwan [J]. Journal of Asian Earth Sciences, 2017, 135: 281-290. doi: 10.1016/j.jseaes.2017.01.003
[21] TAREQ S M, TANAKA N, OHTA K. Biomarker signature in tropical wetland: Lignin phenol vegetation index (LPVI) and its implications for reconstructing the paleoenvironment [J]. Science of the Total Environment, 2004, 324(1/2/3): 91-103.
[22] HEDGES J I, MANN D C. The characterization of plant tissues by their lignin oxidation products [J]. Geochimica et Cosmochimica Acta, 1979, 43(11): 1803-1807. doi: 10.1016/0016-7037(79)90028-0
[23] MOINGT M, LUCOTTE M, PAQUET S. Lignin biomarkers signatures of common plants and soils of Eastern Canada [J]. Biogeochemistry, 2016, 129(1/2): 133-148.
[24] PAN B, LIN D, MASHAYEKHI H, et al. Adsorption and hysteresis of bisphenol A and 17 alpha-ethinyl estradiol on carbon nanomaterials [J]. Environmental Science & Technology, 2008, 42(15): 5480-5485.
[25] HAN L, SUN K, JIN J, et al. Role of structure and microporosity in phenanthrene sorption by natural and engineered organic matter [J]. Environmental Science & Technology, 2014, 48(19): 11227-11234.