[1] |
HAO Y Q, YIN Q Y, ZHANG Y T, et al. Recent progress in the development of fluorescent probes for thiophenol [J]. Molecules, 2019, 24(20): 3716. doi: 10.3390/molecules24203716
|
[2] |
WU Q Q, WANG J B, LIANG W L. A red-to-near-infrared fluorescent probe for the detection of thiophenol based on a novel hydroxylflavone-quinoline-amino molecular system with large Stokes shift [J]. Dyes and Pigments, 2021, 190: 109289. doi: 10.1016/j.dyepig.2021.109289
|
[3] |
张改清, 阴彩霞. 基于二氰基异佛尔酮的荧光探针在检测苯硫酚中的应用 [J]. 无机化学学报, 2021, 37(7): 1245-1250. doi: 10.11862/CJIC.2021.161
ZHANG G Q, YIN C X. Application of fluorescent probe based on dicyanoisophorone in detection of thiophenol [J]. Chinese Journal of Inorganic Chemistry, 2021, 37(7): 1245-1250(in Chinese). doi: 10.11862/CJIC.2021.161
|
[4] |
WANG Z, HAN D M, JIA W P, et al. Reaction-based fluorescent probe for selective discrimination of thiophenols over aliphaticthiols and its application in water samples [J]. Analytical Chemistry, 2012, 84(11): 4915-4920. doi: 10.1021/ac300512b
|
[5] |
XU T, ZHAO S J, WU X L, et al. Β-cyclodextrin-promoted colorimetric and fluorescence turn-on probe for discriminating highly toxic thiophenol from biothiols [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(16): 6413-6421.
|
[6] |
GHAMALI M, CHTITA S, OUSAA A, et al. QSAR analysis of the toxicity of phenols and thiophenols using MLR and ANN [J]. Journal of Taibah University for Science, 2017, 11(1): 1-10. doi: 10.1016/j.jtusci.2016.03.002
|
[7] |
LI J, ZHANG C F, YANG S H, et al. A coumarin-based fluorescent probe for selective and sensitive detection of thiophenols and its application [J]. Analytical Chemistry, 2014, 86(6): 3037-3042. doi: 10.1021/ac403885n
|
[8] |
葛文奇, 圣迎迎, 乔亚东, 等. 苯硫酚荧光探针研究进展 [J]. 化学传感器, 2017, 37(1): 9-20. doi: 10.3969/j.issn.1008-2298.2017.01.003
GE W Q, SHENG Y Y, QIAO Y D, et al. Research progress of thiophenol fluorescence probe [J]. Chemical Sensors, 2017, 37(1): 9-20(in Chinese). doi: 10.3969/j.issn.1008-2298.2017.01.003
|
[9] |
DUAN N, WANG H, LI Y N, et al. The research progress of organic fluorescent probe applied in food and drinking water detection [J]. Coordination Chemistry Reviews, 2021, 427: 213557. doi: 10.1016/j.ccr.2020.213557
|
[10] |
CHEN X Q, ZHOU Y, PENG X J, et al. Fluorescent and colorimetric probes for detection of thiols [J]. Chemical Society Reviews, 2010, 39(6): 2120-2135. doi: 10.1039/b925092a
|
[11] |
WANG H, WU X M, YANG S X, et al. A rapid and visible colorimetric fluorescent probe for benzenethiol flavor detection [J]. Food Chemistry, 2019, 286: 322-328. doi: 10.1016/j.foodchem.2019.02.033
|
[12] |
LI F, YAO W, TIAN C H, et al. A ratiometric fluorescent probe for selective detection of thiophenol derivatives [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2022, 271: 120870. doi: 10.1016/j.saa.2022.120870
|
[13] |
LI Y Q, SU W, ZHOU Z L, et al. A dual-response near-infrared fluorescent probe for rapid detecting thiophenol and its application in water samples and bio-imaging [J]. Talanta, 2019, 199: 355-360. doi: 10.1016/j.talanta.2019.02.022
|
[14] |
WU Y Q, SHI A P, LIU H Y, et al. A novel near-infrared xanthene-based fluorescent probe for detection of thiophenol in vitro and in vivo [J]. New Journal of Chemistry, 2020, 44(40): 17360-17367. doi: 10.1039/D0NJ03370G
|
[15] |
JIANG W, FU Q Q, FAN H Y, et al. A highly selective fluorescent probe for thiophenols [J]. Angewandte Chemie (International Ed. in English), 2007, 46(44): 8445-8448. doi: 10.1002/anie.200702271
|
[16] |
WANG X B, ZHOU J H, ZHANG D T, et al. A very fast 3-hydroxy-coumarin-based fluorescent probe for highly selective and sensitive detection of thiophenols and its application in water samples [J]. Analytical Methods, 2016, 8(38): 6916-6922. doi: 10.1039/C6AY02037B
|
[17] |
WU J J, SU D D, QIN C Q, et al. A fast responsive chromogenic and near-infrared fluorescence lighting-up probe for visual detection of toxic thiophenol in environmental water and living cells [J]. Talanta, 2019, 201: 111-118. doi: 10.1016/j.talanta.2019.03.113
|
[18] |
LIN V S, CHEN W, XIAN M, et al. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems [J]. Chemical Society Reviews, 2015, 44(14): 4596-4618. doi: 10.1039/C4CS00298A
|
[19] |
KATERINOPOULOS H E. The coumarin moiety as chromophore of fluorescent ion indicators in biological systems [J]. Current Pharmaceutical Design, 2004, 10(30): 3835-3852. doi: 10.2174/1381612043382666
|
[20] |
赵慧君, 吴通, 孙玥, 等. 基于香豆素的比率型荧光探针对溶液及气相中三氟化硼的检测 [J]. 高等学校化学学报, 2021, 42(8): 2422-2427.
ZHAO H J, WU T, SUN Y, et al. A coumarin-based ratiometric fluorescent probe for BF3 detection in solution and air [J]. Chemical Journal of Chinese Universities, 2021, 42(8): 2422-2427(in Chinese).
|
[21] |
刘忠诚, 杜美利, 韩翔, 等. 香豆素类荧光探针对硫化氢检测的研究进展 [J]. 中国无机分析化学, 2021, 11(6): 27-40. doi: 10.3969/j.issn.2095-1035.2021.06.006
LIU Z C, DU M L, HAN X, et al. Research progress of coumarin fluorescent probes for hydrogen sulfide detection [J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(6): 27-40(in Chinese). doi: 10.3969/j.issn.2095-1035.2021.06.006
|
[22] |
KOWADA T, MAEDA H, KIKUCHI K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells [J]. Chemical Society Reviews, 2015, 44(14): 4953-4972. doi: 10.1039/C5CS00030K
|
[23] |
ZHANG S R, WANG Q, WU F F, et al. Merocyanine-based turn-on fluorescent probe for the sensitive and selective determination of thiophenols via a pKa shift mechanism [J]. Talanta, 2020, 216: 120965. doi: 10.1016/j.talanta.2020.120965
|