[1] 苗竹, 任贝, 吕正勇, 等. 工业污染场地修复现状[J]. 资源节约与环保, 2020(3): 21-22. doi: 10.3969/j.issn.1673-2251.2020.03.022
[2] BEYKE G, FLEMING D. In situ thermal remediation of DNAPL and LNAPL using electrical resistance heating[J]. Remediation Journal, 2005, 15(3): 5-22. doi: 10.1002/rem.20047
[3] 葛松, 孟宪荣, 许伟, 等. 原位电阻热脱附土壤升温机制及影响因素[J]. 环境科学, 2020, 41(8): 3822-3828.
[4] SLEEP B E, MA Y F. Thermal variation of organic fluid properties and impact on thermal remediation feasibility[J]. Journal of Soil Contamination, 2008, 6(3): 281-306.
[5] HORST J, MUNHOLLAND J, HEGELE P, et al. In situ thermal remediation for source areas: technology advances and a review of the market from 1988–2020[J]. Ground Water Monitoring & Remediation, 2021, 41(1): 17-31.
[6] 田垚, 杨永刚, 韩自玉, 等. 电阻加热条件优化及其对污染土壤中苯并(a)芘的去除[J]. 环境工程学报, 2019, 13(10): 2336-2346. doi: 10.12030/j.cjee.201905176
[7] HIEBERT A D, VERMEULEN F E, CHUTE F S, et al. Numerical simulation results for the electrical heating of athabasca oil-sand formations[J]. Spe Reservoir Engineering, 1986, 1(1): 76-84. doi: 10.2118/13013-PA
[8] HIEBERT A D, CAPJACK C E, CHUTE F S, et al. A simulation code for investigating 2D heating of material bodies by low frequency electric fields[J]. Applied Mathematical Modelling, 1983, 7(5): 366-371. doi: 10.1016/0307-904X(83)90136-1
[9] CARRIGAN C R, NITAO J J. Predictive and diagnostic simulation of in situ electrical heating in contaminated, low-permeability soils[J]. Environmental Science & Technology, 2000, 34(22): 4835-4841.
[10] MCGEE B C W, VERMEULEN F E. The mechanisms of electrical heating for the recovery of bitumen from oil sands[J]. Journal of Canadian Petroleum Technology, 2007, 46(1): 28-34.
[11] KROL M M, SLEEP B E, JOHNSON R L. Impact of low-temperature electrical resistance heating on subsurface flow and transport[J]. Water Resources Research, 2011, 47(5): W05546.
[12] 许丹芸, 张亚宁, 朱玲, 等. 基于COMSOL模拟的有机污染土壤ERH修复工艺优化[J]. 环境工程学报, 2021, 15(11): 3642-3650. doi: 10.12030/j.cjee.202101051
[13] TAO G L, LEI D, LIU L S, et al. Prediction of soil water characteristic curve based on soil water evaporation[J]. Advances in Civil Engineering, 2021, 2021: 1-14.
[14] YAWS C L, YANG H C. To estimate vapor pressure easily[J]. Hydrocarbon Processing, 1989, 68(10): 65-70.
[15] TARNAWSKI V R, LEONG W H, BRISTOW K L. Developing a temperature-dependent Kersten function for soil thermal conductivity[J]. International Journal of Energy Research, 2000, 24(15): 1335-1350. doi: 10.1002/1099-114X(200012)24:15<1335::AID-ER652>3.0.CO;2-X
[16] ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 1942, 146(1): 54-62. doi: 10.2118/942054-G
[17] 陈仁朋, 陈伟, 王进学, 等. 饱和砂性土孔隙水电导率特性及测试技术[J]. 岩土工程学报, 2010, 32(5): 780-783.
[18] MA R J, MCBRATNEY A, WHELAN B, et al. Comparing temperature correction models for soil electrical conductivity measurement[J]. Precision Agriculture, 2011, 12(1): 55-66. doi: 10.1007/s11119-009-9156-7
[19] HEGELE P R, MCGEE B C W. Managing the negative impacts of groundwater flow on electrothermal remediation[J]. Remediation Journal, 2017, 27(3): 29-38. doi: 10.1002/rem.21516
[20] FU Y W, HORTON R, REN T S, et al. A general form of Archie's model for estimating bulk soil electrical conductivity[J]. Journal of Hydrology, 2021, 59(7): 126160.
[21] 唐朝生, 施斌, 顾凯. 土中水分的蒸发过程实验研究[J]. 工程地质学报, 2011, 19(6): 875-881. doi: 10.3969/j.issn.1004-9665.2011.06.012
[22] HAN Z Y, JIAO W T, TIAN Y, et al. Lab-scale removal of PAHs in contaminated soil using electrical resistance heating: Removal efficiency and alteration of soil properties[J]. Chemosphere, 2020, 23(9): 124496.
[23] MUNHOLLAND J L, MUMFORD K G, KUEPER B H. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating[J]. Journal of Contaminant Hydrology, 2016, 18(4): 14-24.