[1] |
王小攀, 林璟, 张发明, 等. 重金属工业废水处理技术的研究进展 [J]. 山东化工, 2020, 49(9): 69-71,76. doi: 10.3969/j.issn.1008-021X.2020.09.025
WANG X P, LIN J, ZHANG F M, et al. Research progress of the industrial wastewater treatment technology for heavy metal [J]. Shandong Chemical Industry, 2020, 49(9): 69-71,76(in Chinese). doi: 10.3969/j.issn.1008-021X.2020.09.025
|
[2] |
SUN J, TIAN Q F, DENG N S. Notice of retraction: Harmless treatment method for the removal of heavy metals from simulative wastewater by inducing crystallization[C]//2011 5th International Conference on Bioinformatics and Biomedical Engineering. May 10-12, 2011, Wuhan, China. IEEE, 2011: 1-5.
|
[3] |
于萍, 任月明, 张密林. 处理重金属废水技术的研究进展 [J]. 环境科学与管理, 2006, 31(7): 103-105,108. doi: 10.3969/j.issn.1673-1212.2006.07.032
YU P, REN Y M, ZHANG M L. The reseachful progress on treatment techniques of heavy metal water [J]. Environmental Science and Management, 2006, 31(7): 103-105,108(in Chinese). doi: 10.3969/j.issn.1673-1212.2006.07.032
|
[4] |
HALYSH V, TRUS I, GOMELYA M, et al. Utilization of modified biosorbents based on walnut shells in the processes of wastewater treatment from heavy metal ion [J]. Journal of Ecological Engineering, 2020, 21(4): 128-133. doi: 10.12911/22998993/119809
|
[5] |
CELIK A, DEMIRBAŞ A. Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes [J]. Energy Sources, 2005, 27(12): 1167-1177. doi: 10.1080/00908310490479583
|
[6] |
孙国庆. 新型吸附剂处理重金属废水的研究进展 [J]. 智能城市, 2020, 6(11): 136-137.
SUN G Q. Research progress of new adsorbents for heavy metal wastewater treatment [J]. Intelligent City, 2020, 6(11): 136-137(in Chinese).
|
[7] |
王卓然, 王广智, 耿钰萱, 等. 电镀废水中重金属处理的研究进展 [J]. 电镀与环保, 2017, 37(1): 1-3. doi: 10.3969/j.issn.1000-4742.2017.01.001
WANG Z R, WANG G Z, GENG Y X, et al. Research progress on treatment of electroplating wastewater containing heavy metal [J]. Electroplating & Pollution Control, 2017, 37(1): 1-3(in Chinese). doi: 10.3969/j.issn.1000-4742.2017.01.001
|
[8] |
GRACE J R. Hydrodynamics of gas fluidized beds[M]//Fluidized Bed Boilers. Amsterdam: Elsevier, 1984: 13-30.
|
[9] |
CHENG J X, YANG H T, FAN C L, et al. Review on the applications and development of fluidized bed electrodes [J]. Journal of Solid State Electrochemistry, 2020, 24(10): 2199-2217. doi: 10.1007/s10008-020-04786-w
|
[10] |
ZHENG D, ZOU W, YAN J, et al. Coupling of contact nucleation kinetics with breakage model for crystallization of sodium chloride crystal in fluidized bed crystallizer [J]. Journal of Chemistry, 2019, 2019: 1-11.
|
[11] |
BALLESTEROS F C, SALCEDO A F S, VILANDO A C, et al. Removal of nickel by homogeneous granulation in a fluidized-bed reactor [J]. Chemosphere, 2016, 164: 59-67. doi: 10.1016/j.chemosphere.2016.08.081
|
[12] |
REITERER F, JOHANNES W, GAMSJÄGER H. Semimicro determination of solubility constants: Copper(Ⅱ) carbonate and iron(Ⅱ) carbonate [J]. Microchimica Acta, 1981, 75(1/2): 63-72.
|
[13] |
PATNAIK P. Handbook of inorganic chemicals[M]. New York: McGraw-Hill, 2003.
|
[14] |
SCAIFE J F. The solubility of malachite [J]. Canadian Journal of Chemistry, 1957, 35(11): 1332-1340. doi: 10.1139/v57-177
|
[15] |
STELLA R, GANZERLI-VALENTINI M T. Copper ion-selective electrode for determination of inorganic copper species in fresh waters [J]. Analytical Chemistry, 1979, 51(13): 2148-2151. doi: 10.1021/ac50049a021
|
[16] |
KISELEVA I A, OGORODOVA L P, MELCHAKOVA L V, et al. Thermodynamic properties of copper carbonates—malachite Cu2(OH)2CO3 and azurite Cu3(OH)2(CO3)2 [J]. Physics and Chemistry of Minerals, 1992, 19(5): 322-333.
|
[17] |
BLAIS J F, DJEDIDI Z, CHEIKH R B, et al. Metals precipitation from effluents: Review [J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2008, 12(3): 135-149. doi: 10.1061/(ASCE)1090-025X(2008)12:3(135)
|
[18] |
ZHOU P, HUANG J C, LI A W F, et al. Heavy metal removal from wastewater in fluidized bed reactor [J]. Water Research, 1999, 33(8): 1918-1924. doi: 10.1016/S0043-1354(98)00376-5
|
[19] |
UDOMKITTHAWEEWAT N, ANOTAI J, CHOI A E S, et al. Removal of zinc based on a screw manufacturing plant wastewater by fluidized-bed homogeneous granulation process [J]. Journal of Cleaner Production, 2019, 230: 1276-1286. doi: 10.1016/j.jclepro.2019.05.192
|
[20] |
CHEN C S, SHIH Y J, HUANG Y H. Remediation of lead (Pb(Ⅱ)) wastewater through recovery of lead carbonate in a fluidized-bed homogeneous crystallization (FBHC) system [J]. Chemical Engineering Journal, 2015, 279: 120-128. doi: 10.1016/j.cej.2015.05.013
|
[21] |
WILMS D, VAN HAUTE A, VAN DIJK J, et al. Recovery of nickel by crystallization of nickel carbonate in a fluidized-bed reactor[M]//Water Pollution Control in Asia. Amsterdam: Elsevier, 1988: 449-456.
|
[22] |
GUILLARD D, LEWIS A E. Nickel carbonate precipitation in a fluidized-bed reactor [J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5564-5569.
|
[23] |
LEE M, CHANG W, HUANG C, et al. Method of arsenic immobilization in crystalline form water: US7045066 B2[P]. 05/16/2006.
|
[24] |
JANSSEN C W. Process for the removal of metals, in particular heavy metals, from waste water: EP0279964 A2[P]. 12/18/1987.
|
[25] |
NIELSEN P B, CHRISTENSEN T C, VENDRUP M. Continuous removal of heavy metals from FGD wastewater in a fluidised bed without sludge generation [J]. Water Science and Technology, 1997, 36(2/3): 391-397.
|
[26] |
LEE C I, YANG W F. Heavy metal removal from aqueous solution in sequential fluidized-bed reactors [J]. Environmental Technology, 2005, 26(12): 1345-1353. doi: 10.1080/09593332608618613
|
[27] |
孙杰, 赵晖, 邓南圣. 无害化诱导结晶新工艺处理重金属废水 [J]. 水处理技术, 2006, 32(9): 63-65. doi: 10.3969/j.issn.1000-3770.2006.09.017
SUN J, ZHAO H, DENG N S. A new technology for heavy metal ion removal from wastewater with a harmless treatment method [J]. Technology of Water Treatment, 2006, 32(9): 63-65(in Chinese). doi: 10.3969/j.issn.1000-3770.2006.09.017
|
[28] |
唐章程, 黄廷林, 胡瑞柱, 等. 结晶造粒流化床同步去除水中铁、锰及硬度的中试实验 [J]. 环境工程学报, 2018, 12(11): 3090-3098. doi: 10.12030/j.cjee.201806146
TANG Z C, HUANG T L, HU R Z, et al. Simultaneous removal of iron, manganese and hardness by pellet fluidized bed reactor in pilot-scale experiment [J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3090-3098(in Chinese). doi: 10.12030/j.cjee.201806146
|
[29] |
LEE C I, YANG W F, HSIEH C I. Removal of Cu(II) from aqueous solution in a fluidized-bed reactor [J]. Chemosphere, 2004, 57(9): 1173-1180. doi: 10.1016/j.chemosphere.2004.08.028
|
[30] |
阎中, 熊娅, 王凯军, 等. 诱导结晶工艺处理含铜废水 [J]. 化工学报, 2009, 60(10): 2603-2608.
YAN Z, XIONG Y, WANG K J, et al. Copper removal by induced crystallization from copper-containing wastewater [J]. Journal of the Chemical Industry and Engineering Society of China, 2009, 60(10): 2603-2608(in Chinese).
|
[31] |
卢明俊, 黄耀辉, 施育仁. 以流体化床结晶技术合成均质碱式碳酸铜及氧化铜结晶物之方法: TWI640477 B[P]. 11/11/2018.
LU M J, HUANG Y H, SHI Y R. Method of synthesizing homogeneous granular basic cupric carbonate and copper oxide by using fluidized-bed crystallization technology: TWI640477 B[P]. 11/11/2018(in Chinese).
|
[32] |
SCHÖLLER M, V DIJK J C, V HAUTE A, et al. Recovery of heavy metals by crystallization in the pellet reactor, A promising development [J]. Studies in Environmental Science, 1988, 34: 77-90. doi: 10.1016/S0166-1116(08)71280-9
|
[33] |
UILLARD D, LEWIS A E. Optimization of nickel hydroxycarbonate precipitation using a laboratory pellet reactor [J]. Industrial & Engineering Chemistry Research, 2002, 41(13): 3110-3114.
|
[34] |
OSTODES V C T, LEWIS A E. Reactive crystallization of nickel hydroxy-carbonate in fluidized-bed reactor: Fines production and column design [J]. Chemical Engineering Science, 2006, 61(5): 1377-1385. doi: 10.1016/j.ces.2005.08.038
|
[35] |
SALCEDO A F M, BALLESTEROS F C, VILANDO A C, et al. Nickel recovery from synthetic Watts bath electroplating wastewater by homogeneous fluidized bed granulation process [J]. Separation and Purification Technology, 2016, 169: 128-136. doi: 10.1016/j.seppur.2016.06.010
|
[36] |
卢明俊, 黄耀辉. 以流体化床结晶技术从含镍废水中合成碱式氧化镍结晶物之方法: TW201938495 A[P]. 10/01/2019.
LU M J, HUANG Y H. Method of synthesizing granular basic nickel oxide from nickel-contained wastewater by using fluidized-bed crystallization technology. TW201938495 A[P]. 10/01/2019(in Chinese).
|
[37] |
LERTRATWATTANA K, KEMACHEEVAKUL P, GARCIA-SEGURA S, et al. Recovery of copper salts by fluidized-bed homogeneous granulation process: High selectivity on malachite crystallization [J]. Hydrometallurgy, 2019, 186: 66-72. doi: 10.1016/j.hydromet.2019.03.015
|
[38] |
HONG X Y, ZHENG E H, SHEN X Z. Apparatus and method for sulfide crystallization of Cu and Ni using fluidized bed reactor: KR101681701 B1[P]. 12/01/2016.
|
[39] |
JANSEN C. Process for removing of heavy metal from water in particular from waste water: US4764284 A[P]. 08/16/1988.
|
[40] |
杨艳, 陈坚, 马力强. 诱导结晶工艺处理含锌废水[EB/OL]. 北京: 中国科技论文在线[2012-06-12].
[2012-06-12]. YANG Y, CHEN J, MA L Q. Zinc wastewater treatment by induced crystallization[EB/OL]. Beijing: Sciencepaper Online [2012-06-12].
|
[41] |
卢明俊, 黄耀辉. 以流体化床结晶技术合成均质含锌结晶物之方法: TW201902821 A[P]. 01/16/2019.
LU M J, HUANG Y H. Method of synthesizing homogeneous zinc-containing crystals by using fluidized-bed crystallization technology: TW201902821 A[P]. 01/16/2019(in Chinese).
|
[42] |
CHEN J P, YU H. Lead removal from synthetic wastewater by crystallization in a fluidized-bed reactor [J]. Journal of Environmental Science and Health, Part A, 2000, 35(6): 817-835. doi: 10.1080/10934520009377005
|
[43] |
DE LUNA M D G, BELLOTINDOS L M, ASIAO R N, et al. Removal and recovery of lead in a fluidized-bed reactor by crystallization process [J]. Hydrometallurgy, 2015, 155: 6-12. doi: 10.1016/j.hydromet.2015.03.009
|
[44] |
HUANG C, PAN J R, LEE M, et al. Treatment of high-level arsenic-containing wastewater by fluidized bed crystallization process [J]. Journal of Chemical Technology & Biotechnology, 2007, 82(3): 289-294.
|
[45] |
WILMS D, VERCAEMST K, VAN DIJK J C. Recovery of silver by crystallization of silver carbonate in a fluidized-bed reactor [J]. Water Research, 1992, 26(2): 235-239. doi: 10.1016/0043-1354(92)90223-Q
|
[46] |
NOMURA J, SUGITA Y. The manganese-containing water treatment method and apparatus: JP3729365 B2[P]. 12/21/2005.
|
[47] |
SU C C, REANO R L, DALIDA M L P, et al. Barium recovery by crystallization in a fluidized-bed reactor: Effects of pH, Ba/P molar ratio and seed [J]. Chemosphere, 2014, 105: 100-105. doi: 10.1016/j.chemosphere.2014.01.005
|
[48] |
DOTREMONT C, WILMS D, DEVOGELAERE D, et al. Recovery of cadmium by crystallization of cadmium carbonate in a fluidized-bed reactor[M]//Chemistry for the Protection of the Environment. Springer, Boston, MA, 1991: 741-751.
|