[1] 陈鹏, 陶雷, 谢怡冰, 等. 低温等离子体协同催化降解挥发性有机物的研究进展[J]. 化工进展, 2019, 38(9): 4284-4294.
[2] 胡伟. 介质阻挡放电去除VOCs影响因素和副产物研究[D]. 南京: 南京信息工程大学, 2019.
[3] ZHANG H B, LI K, LI L, et al. High efficient styrene mineralization through novel NiO-TiO2-Al2O3 packed pre-treatment/ treatment/post-treatment dielectric barrier discharge plasma[J]. Chemical Engineering Journal, 2018, 343: 759-769. doi: 10.1016/j.cej.2018.03.057
[4] GIRARD-LAURIAULT P, DESJARDINS P, UNGER W. Chemical characterisation of nitrogen-rich plasma-polymer films deposited in dielectric barrier discharges at atmospheric pressure[J]. Plasma Processes & Polymers, 2009, 5(7): 631-644.
[5] VANDENBROUCKE A, MORENT R, GEYTER N, et al. Non-thermal plasmas for non-catalytic and catalytic VOC abatement[J]. Journal of Hazardous Materials, 2011, 195: 30-54. doi: 10.1016/j.jhazmat.2011.08.060
[6] ODA T. Non-thermal plasma processing for environmental protection: decomposition of dilute VOCs in air[J]. Journal of Electrostatics, 2003, 57(3): 293-311.
[7] LI S J, DANG X Q, YU X, et al. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: A review[J]. Chemical Engineering Journal, 2020, 388: 124275. doi: 10.1016/j.cej.2020.124275
[8] 刘聘. Ag/ZSM-5-γ-Al2O3混合填料联合DBD降解吸附态甲苯的稳定性研究[D]. 西安: 西安建筑科技大学, 2019.
[9] JIANG N, LU N, SHANG K F, et al. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation[J]. Journal of Hazardous Materials, 2013, 262: 387-393. doi: 10.1016/j.jhazmat.2013.08.072
[10] 王洪昌. 介质阻挡放电去除气态混合VOCs的研究[D]. 大连: 大连理工大学, 2010.
[11] SIVACHANDIRAN L, KARUPPIAH J, SUBRAHMANYAM C. DBD plasma reactor for oxidative decomposition of Chlorobenzene[J]. International Journal of Chemical Reactor Engineering, 2012: 10.
[12] XU Y F, GUO H F, WANG Y Y, et al. Effects of the transverse electric field on nanosecond pulsed dielectric barrier discharge in atmospheric airflow[J]. Plasma Science and Technology, 2020, 22(5): 54-64.
[13] 李文慧, 姜慧, 杨帆, 等. 高频高压激励环形表面介质阻挡放电特性实验研究[J]. 电工技术学报, 2020, 35(16): 3539-3550.
[14] MEI D H, TU X. Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: Effects of plasma processing parameters and reactor design[J]. Journal of CO2 Utilization, 2017, 19: 68-78. doi: 10.1016/j.jcou.2017.02.015
[15] 陈庆亚, 车学科, 陈川, 等. 高频交流同轴圆柱介质阻挡放电特性实验研究[J]. 高电压技术, 2020, 46(10): 3715-3723.
[16] 沈双晏, 金星, 张鹏. 空气介质阻挡放电发射光谱测量及放电过程粒子分析[J]. 光谱学与光谱分析, 2016, 36(2): 359-363.
[17] 李雪辰, 常媛媛, 贾鹏英. 同轴介质阻挡放电中活性粒子的光谱检测[J]. 光谱学与光谱分析, 2013(5): 1167-1170.
[18] ZHANG S, WANG W C, JIANG P C, et al. Comparison of atmospheric air plasmas excited by high-voltage nanosecond pulsed discharge and sinusoidal alternating current discharge[J]. Journal of Applied Physics, 2013, 114(16): 163301. doi: 10.1063/1.4825053
[19] VEERAPANDIAN S, LEYS C, GEYTER N, et al. Abatement of VOCs using packed bed non-thermal plasma reactors: A review[J]. Catalysts, 2017, 7(4): 113.
[20] GADKARI S, GU S. Numerical investigation of co-axial DBD: Influence of relative permittivity of the dielectric barrier, applied voltage amplitude, and frequency[J]. Physics of Plasmas, 2017, 24(5): 053517. doi: 10.1063/1.4982657
[21] LIANG W J, WANG A H, MA L, et al. Combination of spontaneous polarization plasma and photocatalyst for toluene oxidation[J]. Journal of Electrostatics, 2015, 75: 27-34. doi: 10.1016/j.elstat.2015.02.007
[22] 郝玲艳. 大气压沿面介质阻挡放电等离子体特性研究[D]. 济南: 山东大学, 2016.
[23] 鲁娜, 暴晓丁, 商克峰, 等. 电极结构及填充介质对二氧化碳重整甲烷制合成气的影响[J]. 高电压技术, 2018, 44(3): 881-889.
[24] MEI D H, ZHU X B, HE Y L, et al. Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials[J]. Plasma Sources Science and Technology, 2015, 24(1): 015011.
[25] KIM H, OH S, OGATA A, et al. Decomposition of benzene using Ag/TiO2 packed plasma-driven catalyst reactor: Influence of electrode configuration and Ag-loading amount[J]. Catalysis Letters, 2004, 96(3/4): 189-194. doi: 10.1023/B:CATL.0000030119.69922.07
[26] DAS T N, DEY G R. Cold plasma: Simple tool for convenient utilitarian chemistry in homogeneous and heterogeneous environments[J]. Bhabha Atomic Research Centre, 2005, 45, Special II : 1-677.
[27] CHUANG W C, CHANG M B. Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects[J]. Renewable & Sustainable Energy Reviews, 2016, 62(7): 13-31.
[28] LI S J, DANG X Q, YU X, et al. High energy efficient degradation of toluene using a novel double dielectric barrier discharge reactor[J]. Journal of Hazardous Materials, 2020, 400: 123259. doi: 10.1016/j.jhazmat.2020.123259
[29] YAO X H, ZHANG J, LIANG X S, et al. Plasma-catalytic removal of toluene over the supported manganese oxides in DBD reactor: Effect of the structure of zeolites support[J]. Chemosphere, 2018, 208(1): 922-930.
[30] 唐爱民, 王星敏, 胥江河, 等. 电晕-介质阻挡协同放电低温等离子体降解大流量甲苯废气的研究[J]. 环境污染与防治, 2020, 42(3): 339-343.
[31] YU X, DANG X Q, LI S J, et al. A comparison of in- and post-plasma catalysis for toluene abatement through continuous and sequential processes in dielectric barrier discharge reactors[J]. Journal of Cleaner Production, 2020, 276: 124251. doi: 10.1016/j.jclepro.2020.124251
[32] CHEN Z, MATHUR V K. Nonthermal plasma for gaseous pollution control[J]. Industrial and Engineering Chemistry Research, 2002, 41(9): 2082-2089. doi: 10.1021/ie010459h
[33] LIANG W J, MA L, LIU H, et al. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst[J]. Chemosphere, 2013, 92(10): 1390-1395. doi: 10.1016/j.chemosphere.2013.05.042
[34] GUO Y F, LIAO X B, YE D Q. Detection of hydroxyl radical in plasma reaction on toluene removal[J]. Journal of Environmental Sciences, 2008, 20(12): 1429-1432. doi: 10.1016/S1001-0742(08)62544-9