[1] |
戴维·蒙哥马利. 张甘霖等译. 耕作革命: 让土壤焕发生机[M]. 上海: 上海科学技术出版社, 2019.
DAVID R M. Translated by ZHANG G L, et al. Farming revolution: Revitalization of soil [M]. Shanghai: Shanghai Scientific & Technical Publishers, 2019(in Chinese).
|
[2] |
王玉婷, 王紫玥, 刘田田, 等. 钝化剂对镉污染土壤修复效果及青菜生理效应影响 [J]. 环境化学, 2020, 39(9): 2395-2403. doi: 10.7524/j.issn.0254-6108.2020032505
WANG Y T, WANG Z Y, LIU T T, et al. Effects of amendments on remediation of cadmium-contaminated soil and physiological characteristics of pakchoi [J]. Environmental Chemistry, 2020, 39(9): 2395-2403(in Chinese). doi: 10.7524/j.issn.0254-6108.2020032505
|
[3] |
SHI W Y, SHAO H B, LI H, et al. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite [J]. Journal of Hazardous Materials, 2009, 170(1): 1-6. doi: 10.1016/j.jhazmat.2009.04.097
|
[4] |
张迪, 吴晓霞, 丁爱芳, 等. 生物炭和熟石灰对土壤镉铅生物有效性和微生物活性的影响[J]. 环境化学, 2019, 38(11): 2526-2534.
ZHANG D, WU X X, DING A F, et al. Effects of hydrated lime and biochar on the bioavailability of Cd and Pb and microbial activity in a contaminated soil[J]. Environmental Chemistry, 2019, 38(11): 2526-2534(in Chinese).
|
[5] |
陈功宁. 矿物质钝化剂对重金属污染红壤的修复效应及机理研究[D]. 广州: 华南理工大学, 2017.
CHEN G N. Mechanism and remediation effect of mineral amendment on heavy metals contaminated red soil[D]. Guangzhou: South China University of Technology, 2017(in Chinese).
|
[6] |
XIANG Y L, KANG F R, XIANG Y X, et al. Effects of humic acid-modified magnetic Fe3O4/MgAl-layered double hydroxide on the plant growth, soil enzyme activity, and metal availability [J]. Ecotoxicology and Environmental Safety, 2019, 182: 109424. doi: 10.1016/j.ecoenv.2019.109424
|
[7] |
XU M M, ZHAO Z J, SHI M, et al. Effect of humic acid on the stabilization of cadmium in soil by coprecipitating with ferrihydrite [J]. Environmental Science and Pollution Research, 2019, 26(26): 27330-27337. doi: 10.1007/s11356-019-05893-6
|
[8] |
庞瑜. 腐植酸、水铁矿及其共沉物对土壤Pb形态及生物有效性的影响[D]. 兰州: 兰州大学, 2017.
PANG Y. Effects of coal humic acid and ferrihydrite and their coprecipitate on lead's speciation and bioavailability in soil[D]. Lanzhou: Lanzhou University, 2017(in Chinese).
|
[9] |
李梦婕. 腐殖酸、铁氧化物及其共存时对土壤汞赋存状态及生物活性的影响[D]. 重庆: 西南大学, 2012.
LI M J. The effects of humic acid, iron oxides and their combinations on the occurrence state and biological activity of mercury in soils[D]. Chongqing: Southwest University, 2012(in Chinese).
|
[10] |
肖康, 胡杰, 崔岩山. 复合药剂对不同类型重金属污染土壤的固化修复 [J]. 安全与环境学报, 2017, 17(2): 660-664.
XIAO K, HU J, CUI Y S. Immobilization and remediation of the heavy metal contaminated soils via the composite agents [J]. Journal of Safety and Environment, 2017, 17(2): 660-664(in Chinese).
|
[11] |
徐婧婧, 赵科理, 叶正钱. 重金属污染土壤原位钝化修复材料的最新研究进展 [J]. 环境污染与防治, 2019, 41(7): 852-855.
XU J J, ZHAO K L, YE Z Q. The latest research progress of in situ passivation remediation materials for heavy metal contaminated soil [J]. Environmental Pollution & Control, 2019, 41(7): 852-855(in Chinese).
|
[12] |
赵转军, 杨艳艳, 庞瑜, 等. 铁碳共沉作用对土壤重金属的吸附性能研究进展 [J]. 地球科学进展, 2017, 32(8): 867-874. doi: 10.11867/j.issn.1001-8166.2017.08.0867
ZHAO Z J, YANG Y Y, PANG Y, et al. A review of study on Fe-C interaction and their adsorption properties to soil heavy metal [J]. Advances in Earth Science, 2017, 32(8): 867-874(in Chinese). doi: 10.11867/j.issn.1001-8166.2017.08.0867
|
[13] |
张兆虎. 碳铁共沉物对Cd、Pb复合污染农田土壤修复试验研究[D]. 兰州: 兰州大学, 2019.
ZHANG Z H. Experimental study on soil remediation of Cd & Pb contaminated farmland by iron-carbon co-precipitate[D]. Lanzhou: Lanzhou University, 2019(in Chinese).
|
[14] |
YANG Y H, KOOPAL L K. Immobilisation of humic acids and binding of nitrophenol to immobilised humics [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1999, 151(1/2): 201-212.
|
[15] |
ANIRUDHAN T S, SUCHITHRA P S. Adsorption characteristics of humic acid-immobilized amine modified polyacrylamide/bentonite composite for cationic dyesin aqueous solutions [J]. Journal of Environmental Sciences, 2009, 21(7): 884-891. doi: 10.1016/S1001-0742(08)62358-X
|
[16] |
王龙, 马杰, 邓迎璇, 等. 金属离子在铁(氢)氧化物与腐殖质微界面上的吸附机理和模型研究进展 [J]. 农业资源与环境学报, 2017, 34(5): 405-413.
WANG L, MA J, DENG Y X, et al. Micro-interfacial mechanism and model of metal ions adsorption on the iron(hydr) oxides and humic substances: A review [J]. Journal of Agricultural Resources and Environment, 2017, 34(5): 405-413(in Chinese).
|
[17] |
张磊, 宋柳霆, 郑晓笛, 等. 溶解有机质与铁氧化物相互作用过程对重金属再迁移的影响 [J]. 生态学杂志, 2014, 33(8): 2193-2198.
ZHANG L, SONG L T, ZHENG X D, et al. The remobilization of heavy metals influenced by interaction of DOM and iron oxides [J]. Chinese Journal of Ecology, 2014, 33(8): 2193-2198(in Chinese).
|
[18] |
蒋海燕, 周书葵, 曾光明, 等. 不溶性腐殖酸对U(Ⅵ)的吸附动力学和吸附热力学 [J]. 安全与环境学报, 2015, 15(1): 193-198.
JIANG H Y, ZHOU S K, ZENG G M, et al. Thermodynamics and kinetics of the adsorption of insolubilized humic acid to uranium(Ⅵ) ions [J]. Journal of Safety and Environment, 2015, 15(1): 193-198(in Chinese).
|
[19] |
SEKI H, SUZUKI A. Adsorption of heavy metal ions onto insolubilized humic acid [J]. Journal of Colloid and Interface Science, 1995, 171(2): 490-494. doi: 10.1006/jcis.1995.1207
|
[20] |
马明广, 周敏, 蒋煜峰, 等. 不溶性腐殖酸对重金属离子的吸附研究 [J]. 安全与环境学报, 2006, 6(3): 68-71. doi: 10.3969/j.issn.1009-6094.2006.03.021
MA M G, ZHOU M, JIANG Y F, et al. Study on adsorption of heavy metal ions onto insolublized humic acid [J]. Journal of Safety and Environment, 2006, 6(3): 68-71(in Chinese). doi: 10.3969/j.issn.1009-6094.2006.03.021
|
[21] |
陈荣平, 张银龙, 马爱军, 等. 腐殖酸改性及其对镉的吸附特性 [J]. 南京林业大学学报(自然科学版), 2014, 38(4): 102-106.
CHEN R P, ZHANG Y L, MA A J, et al. Study on the modification of humic acid and its adsorption to cadmium [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(4): 102-106(in Chinese).
|
[22] |
BAKER H, KHALILI F. Analysis of the removal of lead(II) from aqueous solutions by adsorption onto insolubilized humic acid: Temperature and pH dependence [J]. Analytica Chimica Acta, 2004, 516(1/2): 179-186.
|
[23] |
BEESLEY L, MORENO-JIMÉNEZ E, GOMEZ-EYLES J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil [J]. Environmental Pollution, 2010, 158(6): 2282-2287. doi: 10.1016/j.envpol.2010.02.003
|
[24] |
YANG R, LI Z W, HUANG B, et al. Effects of Fe(Ⅲ)-fulvic acid on Cu removal via adsorption versus coprecipitation [J]. Chemosphere, 2018, 197: 291-298. doi: 10.1016/j.chemosphere.2018.01.042
|
[25] |
SHIMIZU M, ZHOU J H, SCHRÖDER C, et al. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates [J]. Environmental Science & Technology, 2013, 47(23): 13375-13384.
|
[26] |
LIANG Y Z, TIAN L, LU Y, et al. Kinetics of Cd(ii) adsorption and desorption on ferrihydrite: Experiments and modeling [J]. Environmental Science. Processes & Impacts, 2018, 20(6): 934-942.
|
[27] |
王虹. 凹凸棒石/纳米铁复合材料的制备及去除亚甲基蓝的研究[D]. 成都: 成都理工大学, 2020.
WANG H. Preparation of attapulgite/nano-iron composite and its removal application to methylene blue[D]. Chengdu: Chengdu University of Technology, 2020(in Chinese).
|
[28] |
ANGARU G K R, CHOI Y L, LINGAMDINNE L P, et al. Facile synthesis of economical feasible fly ash-based zeolite-supported nano zerovalent iron and nickel bimetallic composite for the potential removal of heavy metals from industrial effluents [J]. Chemosphere, 2021, 267: 128889. doi: 10.1016/j.chemosphere.2020.128889
|
[29] |
胡冬雪, 张飞杰, 周燕, 等. 腐殖酸负载羟基磷灰石对废水中Cd2+吸附性能的影响 [J]. 环境科学学报, 2019, 39(12): 4022-4030.
HU D X, ZHANG F J, ZHOU Y, et al. Effect of humic acid load hydroxyapatite on the adsorption of Cd2+ in wastewater [J]. Acta Scientiae Circumstantiae, 2019, 39(12): 4022-4030(in Chinese).
|
[30] |
闫成成, 贾永堂, 曾显华, 等. 静电纺纳米纤维膜用于重金属离子吸附的研究进展 [J]. 材料导报, 2014, 28(9): 139-143.
YAN C C, JIA Y T, ZENG X H, et al. Research development of electrospinning nanofiber mats for heavy metal ions adsorption [J]. Materials Review, 2014, 28(9): 139-143(in Chinese).
|
[31] |
潘胜强, 王铎, 吴山, 等. 土壤理化性质对重金属污染土壤改良的影响分析[J]. 环境工程, 2014, 32(增刊1): 600-603, 633.
PAN S Q, WANG D, WU S, et al. Impact of soil properties on improvement of heavy metal contaminated soil[J]. Environmental Engineering, 2014, 32(Sup 1): 600-603, 633(in Chinese).
|
[32] |
唐琨, 朱伟文, 周文新, 等. 土壤pH对植物生长发育影响的研究进展 [J]. 作物研究, 2013, 27(2): 207-212. doi: 10.3969/j.issn.1001-5280.2013.02.25
TANG K, ZHU W W, ZHOU W X, et al. Research progress on effects of soil pH on plant growth and development [J]. Crop Research, 2013, 27(2): 207-212(in Chinese). doi: 10.3969/j.issn.1001-5280.2013.02.25
|
[33] |
王宏鹏. 石灰性土壤镉污染原位钝化修复材料研究[D]. 北京: 中国地质大学(北京), 2020.
WANG H P. Study on in situ passivation materials for remediation of calcareous cadmium contaminated soil[D]. Beijing: China University of Geosciences, 2020(in Chinese).
|
[34] |
戴树桂. 环境化学[M]. 2版. 北京: 高等教育出版社, 2006: 277-278.
DAI S G. Environmental Chemistry [M]. Beijing: Higher Education Press, 2006: 277-278(in Chinese).
|
[35] |
BRONICK C J, LAL R. Soil structure and management: A review [J]. Geoderma, 2005, 124(1/2): 3-22.
|
[36] |
GERKE J, HERMANN R. Adsorption of orthophosphate to humic-Fe-complexes and to amorphous Fe-oxide [J]. Zeitschrift Für Pflanzenernä hrung Und Bodenkunde, 1992, 155(3): 233-236.
|
[37] |
赵义涛, 姜佰文, 梁运江. 土壤肥料学[M]. 北京: 化学工业出版社, 2009: 163-180.
ZHAO Y T, JIANG B W, LIANG Y J. Soil and Fertilizer Science [M]. Beijing: Chemical Industry Press, 2009: 163-180(in Chinese).
|
[38] |
高晓玲. 有机-矿物缓释材料对土壤养分及玉米产量的影响[D]. 太谷: 山西农业大学, 2005.
GAO X L. The effect of organic- minerals of slowly-release material on soil nutrition and maize yields[D]. Taigu, China: Shanxi Agricultural University, 2005(in Chinese).
|
[39] |
刘丹丹, 刘菲, 缪德仁. 土壤重金属连续提取方法的优化 [J]. 现代地质, 2015, 29(2): 390-396. doi: 10.3969/j.issn.1000-8527.2015.02.024
LIU D D, LIU F, MIAO D R. Optimization of soil heavy metal sequential extraction procedures [J]. Geoscience, 2015, 29(2): 390-396(in Chinese). doi: 10.3969/j.issn.1000-8527.2015.02.024
|
[40] |
JUHASZ A L, WEBER J, NAIDU R, et al. Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies [J]. Environmental Science & Technology, 2010, 44(13): 5240-5247.
|
[41] |
温鑫. 有机-无机复合钝化剂修复镉污染土壤研究[D]. 成都: 西华大学, 2020.
WEN X. Study on the remediation of cadmium polluted soil by organic-inorganic compound passivator[D]. Chengdu: Xihua University, 2020(in Chinese).
|
[42] |
余贵芬, 蒋新, 孙磊, 等. 有机物质对土壤镉有效性的影响研究综述 [J]. 生态学报, 2002, 22(5): 770-776. doi: 10.3321/j.issn:1000-0933.2002.05.021
YU G F, JIANG X, SUN L, et al. A review for effect of organic substances on the availability of cadmium in soils [J]. Acta Ecologica Sinica, 2002, 22(5): 770-776(in Chinese). doi: 10.3321/j.issn:1000-0933.2002.05.021
|
[43] |
袁兴超, 李博, 朱仁凤, 等. 不同钝化剂对铅锌矿区周边农田镉铅污染钝化修复研究 [J]. 农业环境科学学报, 2019, 38(4): 807-817. doi: 10.11654/jaes.2018-0672
YUAN X C, LI B, ZHU R F, et al. Immobilization of Cd and Pb using different amendments of cultivated soils around lead-zinc mines [J]. Journal of Agro-Environment Science, 2019, 38(4): 807-817(in Chinese). doi: 10.11654/jaes.2018-0672
|
[44] |
XU C B, QI J, YANG W J, et al. Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay [J]. Science of the Total Environment, 2019, 686: 476-483. doi: 10.1016/j.scitotenv.2019.05.330
|
[45] |
陶玲, 管天成, 刘瑞珍, 等. 热改性坡缕石对土壤Cd污染的钝化修复研究 [J]. 农业环境科学学报, 2021, 40(4): 782-790. doi: 10.11654/jaes.2020-1115
TAO L, GUAN T C, LIU R Z, et al. Stabilization remediation of cadmium contaminated soil by using heat-modified palygorskite [J]. Journal of Agro-Environment Science, 2021, 40(4): 782-790(in Chinese). doi: 10.11654/jaes.2020-1115
|
[46] |
武晓微, 翟文珺, 高超, 等. 钝化剂对土壤性质及镉生物有效性的影响研究 [J]. 农业环境科学学报, 2021, 40(3): 562-569. doi: 10.11654/jaes.2020-0826
WU X W, ZHAI W J, GAO C, et al. Influence of passivation on soil properties and bioavailability of cadmium in soils [J]. Journal of Agro-Environment Science, 2021, 40(3): 562-569(in Chinese). doi: 10.11654/jaes.2020-0826
|
[47] |
赵立芳. 腐植酸、水铁矿及其共沉物对土壤镉的钝化效果研究[D]. 兰州: 兰州大学, 2019.
ZHAO L F. Study on the passivation effect of humic acid, ferrihydrite and their coprecipitates on cadmium in soils[D]. Lanzhou: Lanzhou University, 2019(in Chinese).
|
[48] |
BARGAR J R, BROWN G E Jr, PARKS G A Jr. Surface complexation of Pb(II) at oxide-water interfaces: I. XAFS and bond-valence determination of mononuclear and polynuclear Pb(II) sorption products on aluminum oxides [J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2617-2637. doi: 10.1016/S0016-7037(97)00124-5
|
[49] |
WANG H W, TSANG Y F, WANG Y N, et al. Adsorption capacities of poorly crystalline Fe minerals for antimonate and arsenate removal from water: Adsorption properties and effects of environmental and chemical conditions [J]. Clean Technologies and Environmental Policy, 2018, 20(10): 2169-2179. doi: 10.1007/s10098-018-1552-0
|
[50] |
刘保峰. 土壤腐殖酸及其对重金属化学与生物行为的影响[C]//全国耕地土壤污染监测与评价技术研讨会论文集. 海拉尔, 2006: 191-196.
LIU B F. Soil humic acid and its effects on the chemical and biological behavior of heavy metals[C]//. National Workshop on Monitoring and Evaluation Technology of Soil Pollution in Arable Land, 2006: 191-196 (in Chinese).
|
[51] |
LIU H B, CHEN T H, FROST R L. An overview of the role of goethite surfaces in the environment [J]. Chemosphere, 2014, 103: 1-11. doi: 10.1016/j.chemosphere.2013.11.065
|