[1] LIN S S, ZHAO H Y, ZHU L P, et al. Seawater desalination technology and engineering in China: A review[J]. Desalination, 2021, 498: 114728. doi: 10.1016/j.desal.2020.114728
[2] LIU X M, DAI J, CHEN G H, et al. Evaluation of potential environmental benefits from seawater toilet flushing[J]. Water Research, 2019, 162: 505-515. doi: 10.1016/j.watres.2019.07.016
[3] LI Y T, WANG Y F, GAO Y Z, et al. Seawater toilet flushing sewage treatment and nutrients recovery by marine bacterial-algal mutualistic system[J]. Chemosphere, 2018, 195: 70-79. doi: 10.1016/j.chemosphere.2017.12.076
[4] ZHANG H N, YUAN X, WANG H, et al. Performance and microbial community of different biofilm membrane bioreactors treating antibiotic-containing synthetic mariculture wastewater[J]. Membranes, 2020, 10(10): 282. doi: 10.3390/membranes10100282
[5] ZHANG H N, WANG H Q, JIE M R, et al. Performance and microbial communities of different biofilm membrane bioreactors with pre-anoxic tanks treating mariculture wastewater[J]. Bioresource Technology, 2019, 295: 122302.
[6] 周翔, 吕娜, 李秀芬, 等. Cu-NWs/RGO/PVDF导电微滤膜的制备及其抗污染性能[J]. 环境工程学报, 2021, 16(1): 281-291.
[7] 于伯洋, 苏帆, 孙境求, 等. 电控膜生物反应器技术回顾与展望[J]. 环境科学学报, 2020, 40(12): 4215-4224.
[8] FAN X, ZHAO H, QUAN X, et al. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation[J]. Water Research, 2016, 88: 285-292. doi: 10.1016/j.watres.2015.10.043
[9] 印霞棐, 李秀芬, 华兆哲, 等. 电场控制MBR膜污染技术研究进展[J]. 膜科学与技术, 2020, 40(2): 127-135.
[10] DUDCHENKO A V, ROLF J, RUSSELL K, et al. Organic fouling inhibition on electrically conducting carbon nanotube-polyvinyl alcohol composite ultrafiltration membranes[J]. Journal of Membrane Science, 2014, 468(15): 1-10.
[11] WANG S, GAO M C, SHE Z L, et al. Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal, microbial activity and microbial community of a sequencing batch reactor[J]. Bioresource Technology, 2016, 216: 428-436. doi: 10.1016/j.biortech.2016.05.099
[12] WANG Z C, GAO M C, WANG Z, et al. Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor[J]. Chemosphere, 2013, 93: 2789-2795. doi: 10.1016/j.chemosphere.2013.09.038
[13] COSTA R E D, LOBO-RECIO M A, BATTISTELLI A A, et al. Comparative study on treatment performance, membrane fouling, and microbial community profile between conventional and hybrid sequencing batch membrane bioreactors for municipal wastewater treatment[J]. Environmental Science and Pollution Research, 2018, 25(32): 32767-32782. doi: 10.1007/s11356-018-3248-8
[14] XU L, ZHANG G Q, YUAN G E, et al. Anti-fouling performance and mechanism of anthraquinone/polypyrrole composite modified membrane cathode in a novel MFC-aerobic MBR coupled system[J]. Royal Society of Chemistry Advances, 2015, 5(29): 22533-22543.
[15] LOGHAVI L, SASTRY S K, YOUSEF A E. Effect of moderate electric field frequency on growth kinetics and metabolic activity of Lactobacillus acidophilus[J]. Biotechnology Progress, 2010, 24(1): 148-153.
[16] 印霞棐, 李秀芬, 华兆哲, 等. 电极间距对自生电场MBR去除污染物的影响[J]. 环境工程学报, 2020, 14(8): 2164-2175. doi: 10.12030/j.cjee.201910072
[17] THAMARAISELVAN T, RONEN A, LERMEN S, et al. Low voltage electric potential as driving force to hinder biofouling in self-supporting carbon nanotube membranes[J]. Water Research, 2018, 129: 143-153. doi: 10.1016/j.watres.2017.11.004
[18] 陈文希, 李亮, 钱光升, 等. 电凝聚强化膜生物反应器处理模拟生活污水[J]. 环境工程, 2014, 32(9): 56-60.
[19] EMMA F, SCALSCHI L, LLORENS E, et al. NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation[J]. Journal of Experimental Botany, 2015, 66(21): 6777-6790. doi: 10.1093/jxb/erv382
[20] TOSHIHARU, MAENO, YOSHITAKA, et al. Cellular redox state protects acetaldehyde-induced alteration in cardiomyocyte function by modifying Ca2+ release from sarcoplasmic reticulum.[J]. American Journal of Physiology Heart and Circulatory Physiology, 2008, 294(1): H121-H133. doi: 10.1152/ajpheart.00520.2007
[21] 张姣. 电场耦合膜生物反应器膜污染控制和强化除磷研究[D]. 北京: 清华大学, 2015.
[22] CHEN M, ZHANG X, WANG Z, et al. Impacts of quaternary ammonium compounds on membrane bioreactor performance: acute and chronic responses of microorganisms[J]. Water research, 2018, 134: 153-161. doi: 10.1016/j.watres.2018.01.073
[23] SU F, LIANG Y, LIU G, et al. Enhancement of anti-fouling and contaminant removal in an electro-membrane bioreactor: Significance of electrocoagulation and electric field[J]. Separation and Purification Technology, 2020, 248: 117077. doi: 10.1016/j.seppur.2020.117077
[24] HASAN S W, ELEKTOROWICZ M, OLESZKIEWICZ J A. Correlations between trans-membrane pressure (TMP) and sludge properties in submerged membrane electro-bioreactor (SMEBR) and conventional membrane bioreactor (MBR)[J]. Bioresource Technology, 2012, 120(3): 199-205.
[25] HUANG C, LIN J, LEE W, et al. Effect of coagulation mechanism on membrane permeability in coagulation-assisted microfiltration for spent filter backwash water recycling[J]. Colloids and Surfaces A-physicochemical and Engineering Aspects, 2011, 378(1): 72-78.
[26] IBEID S, ELEKTOROWICZ M, OLESZKIEWICZ J A. Modification of activated sludge properties caused by application of continuous and intermittent current[J]. Water Research, 2013, 47(2): 903-910. doi: 10.1016/j.watres.2012.11.020
[27] SHI S, XU J, ZENG Q, et al. Impacts of applied voltage on EMBR treating phenol wasterwater: Performance and membrane antifouling mechanism[J]. Bioresource Technology, 2019, 282: 56-62. doi: 10.1016/j.biortech.2019.02.113
[28] TIAN Y, LI H, LI L P, et al. In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation[J]. Biosensors and Bioelectronics, 2015, 64(4): 189-195.
[29] WANG Y K, LI W W, SHENG G P, et al. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling[J]. Water Research, 2013, 47(15): 5794-5800. doi: 10.1016/j.watres.2013.06.058
[30] HAN X M, WANG Z W, CHEN M, et al. Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: Protective mechanisms of extracellular polymeric substances[J]. Environmental Science and Technology, 2017, 51(6): 3233-3241. doi: 10.1021/acs.est.6b05475
[31] AKAMATSU K, LU W, SUGAWARA T, et al. Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field[J]. Water Research, 2010, 44(3): 825-830. doi: 10.1016/j.watres.2009.10.026
[32] ZHENG J, MA J, WANG Z, et al. Contaminant removal from source waters using cathodic electrochemical membrane filtration: mechanisms and Implications[J]. Environmental Science and Technology, 2017, 51(5): 2757-2765. doi: 10.1021/acs.est.6b05625
[33] HUANG J, WANG Z, ZHANG J, et al. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors[J]. Scientific Reports, 2015, 5(1): 3380-3893.
[34] 王明明. 弱电场作用下陶瓷膜MBR运行效果及膜污染控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.