[1] |
BOND T C, D0HERTY S J, FAHEY D W, et al. Bounding the role of black carbon in the climate system: A scientific assessment[J]. Journal of Geophysical Research Atmospheres, 2013, 118(11): 5380-5552. doi: 10.1002/jgrd.50171
|
[2] |
SHRESTHA G, TRAINA S J, SWANSTON C W. Black carbon’s properties and role in the environment: A comprehensive review[J]. Sustainability, 2010, 2(1): 294-320. doi: 10.3390/su2010294
|
[3] |
CHYLEK P, VIDEEN G, NGO D, et al. Effect of black carbon on the optical properties and climate forcing of sulfate aerosols[J]. Journal of Geophysical Research, 1995, 100(D8): 16325-16332. doi: 10.1029/95JD01465
|
[4] |
马志强, 赵秀娟, 孟伟, 等. 雾和霾对北京地区大气能见度影响对比分析[J]. 环境科学研究, 2012, 25(11): 1208-1214.
|
[5] |
李琴. 中国造船业碳减排路在何方[N]. 中国船舶报, 2021-03-19(005).
|
[6] |
WEINGARTNER E, SAATHOFF H, SCHNAITER M, et al. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers[J]. Journal of Aerosol Science, 2003, 34(10): 1445-1463. doi: 10.1016/S0021-8502(03)00359-8
|
[7] |
ARNOTT W P, HAMASHA K, MOOSMULLER H, et al. Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer[J]. Aerosol Science and Technology, 2005, 39(1): 17-29. doi: 10.1080/027868290901972
|
[8] |
SCHMID O, ARTAXO P, ARNOTT W P, et al. Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques[J]. Atmospheric Chemistry and Physics, 2006, 6: 3443-3462. doi: 10.5194/acp-6-3443-2006
|
[9] |
VIRKKULA A, MAKELA T, HILLAMO R, et al. A simple procedure for correcting loading effects of aethalometer data[J]. Air & Waste Management Association, 2007, 57(10): 1214-1222.
|
[10] |
COEN M C, WEINGARTNER E, APITULEY A, et al. Minimizing light absorption measurement artifacts of the aethalometer: Evaluation of five correction algorithms[J]. Atmospheric Measurement Techniques, 2010, 3(6): 457-474.
|
[11] |
DRINOVEC L, MOCNIK G, ZOTTER P, et al. The "dual-spot" aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation[J]. Atmospheric Measurement Techniques, 2015, 8(5): 1965-1979. doi: 10.5194/amt-8-1965-2015
|
[12] |
蔡园青, 徐学哲, 周家成, 等. 黑碳仪测量气溶胶吸收系数的校正算法和影响因素研究进展[J]. 中国环境科学, 2021, 41(9): 4026-4035. doi: 10.3969/j.issn.1000-6923.2021.09.007
|
[13] |
MOOSMULLER H, CHAKRABARTY R K, ARNOTT W P. Aerosol light absorption and its measurement: A review[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110: 844-878. doi: 10.1016/j.jqsrt.2009.02.035
|
[14] |
XU X Z, ZHAO W X, FANG B, et al. Three-wavelength cavity-enhanced albedometer for measuring wavelength dependent optical properties and single scattering albedo of aerosols[J]. Optics Express, 2018, 26: 33484-33500. doi: 10.1364/OE.26.033484
|
[15] |
霍新峰, 欧阳俊. AE33七波段黑碳气溶胶分析仪维护浅析[J]. 分析仪器, 2021(3): 177-182.
|
[16] |
NAKAYMA T, SUZUKI H, KAGAMITANI S, et al. Characterization of a three wavelength photoacoustic soot spectrometer (PASS-3) and a photoacoustic extinctiometer (PAX)[J]. Journal of the Meteorological Society, 2015, 93(2): 285-308. doi: 10.2151/jmsj.2015-016
|
[17] |
SCHWARZ J P, GAO R S, FAHEY D W. Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere[J]. Journal of Geophysical Research, 2006, 111(D16): D16207. doi: 10.1029/2006JD007076
|
[18] |
PETZOLD A, ONASCH T, KEBABIAN P, et al. Intercomparison of a cavity attenuated phase shift-based extinction monitor (CAPS PMex) with an integrating nephelometer and a filter-based absorption monitor[J]. Atmospheric Measurement Techniques, 2013, 6(5): 1141-1151. doi: 10.5194/amt-6-1141-2013
|
[19] |
张宇哲, 支国瑞, 靳文静, 等. 利用黑碳仪获取北京市冬季气溶胶吸光系数的方法研究[J]. 环境科学研究, 2019, 32(8): 1314-1323.
|
[20] |
LAING J R, JAFFE D A, SEDLACEK A J. Comparison of filter-based absorption measurements of biomass burning aerosol and background aerosol at the Mt. bachelor observatory[J]. Aerosol and Air Quality Research, 2020, 20(4): 663-678. doi: 10.4209/aaqr.2019.06.0298
|
[21] |
ZHAO G, YU Y, TIAN P, et al. Evaluation and correction of the ambient particle spectral light absorption measured using a filter-based aethalometer[J]. Aerosol and Air Quality Research, 2020, 20(8): 1833-1841. doi: 10.4209/aaqr.2019.10.0500
|
[22] |
ÅNGSTRöM A. On the atmospheric transmission of sun radiation and on dust in the air[J]. Geografiska Annaler, 1929, 11(2): 156-166. doi: 10.1080/20014422.1929.11880498
|
[23] |
LACK D A, LANGRIDGE J M. On the attribution of black and brown carbon light absorption using the Ångström exponent[J]. Atmospheric Chemistry and Physics, 2013, 13(20): 10535-10543. doi: 10.5194/acp-13-10535-2013
|
[24] |
KIRCHSTETTER T W, NOVAKOV T, HOBBS P V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon[J]. Journal of Geophysical Research:Atmospheres, 2004, 9(D21): 1-12.
|
[25] |
RUSSELL P B, BERGSTROM R W, SHINOZUKA Y, et al. Absorption angstrom exponent in AERONET and related data as an indicator of aerosol composition[J]. Atmospheric Chemistry and Physics, 2010, 10(3): 1155-1169. doi: 10.5194/acp-10-1155-2010
|
[26] |
SANDRADEWI J, PREVOT A S H, SZIDAT S, et al. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter[J]. Environmental Science & Technology, 2008, 42(9): 3316-3323.
|
[27] |
RATHOD T, SAHU S K, TIWARI M, et al. Light absorbing properties of brown carbon generated from pyrolytic combustion of household biofuels[J]. Aerosol and Air Quality Research, 2017, 17(1): 108-116. doi: 10.4209/aaqr.2015.11.0639
|
[28] |
AL F D, SMITH G D. A portable, four-wavelength, single-cell photoacoustic spectrometer for ambient aerosol absorption[J]. Aerosol science and technology, 2018, 52(4): 393-406. doi: 10.1080/02786826.2017.1413231
|
[29] |
CHOW J C, CHEN L W, WANG X L, et al. Improved estimation of PM2.5 brown carbon contributions to filter light attenuation[J]. Particuology, 2021, 56: 1-9. doi: 10.1016/j.partic.2021.01.001
|
[30] |
武瑞东. 实验室内制备黑碳的光吸收及黑碳被有机物包覆后吸光增强效应的研究[D]. 济南: 山东大学, 2018.
|
[31] |
LASKIN A, LASKIN J, NIZKORODOV, et al. Chemistry of atmospheric brown carbon[J]. Chemical Reviews, 2015, 115(10): 4335-4382. doi: 10.1021/cr5006167
|
[32] |
LU Z F, STREETS D G, WINIJKUL E, et al. Light absorption properties and radiative effects of primary organic aerosol emissions[J]. 2015, 49(8): 4868-4877.
|
[33] |
KIRCHSTETTER T W, THATCHER T L. Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation[J]. Atmospheric Chemistry and Physics, 2012, 12(14): 6067-6072. doi: 10.5194/acp-12-6067-2012
|
[34] |
SALEH R, ROBINSON E S, THACIK D S, et al. Brownness of organics in aerosols from biomass burning linked to their black carbon content[J]. Nature Geoscience, 2014, 7(9): 647-650. doi: 10.1038/ngeo2220
|
[35] |
WANG Q Y, HAN Y M, YE J H, et al. High Contribution of Secondary Brown Carbon to Aerosol Light Absorption in the Southeastern Margin of Tibetan Plateau[J]. Geophysical Research Letters, 2019, 46(9): 4962-4970. doi: 10.1029/2019GL082731
|
[36] |
WANG Q Y, YE J H, WANG Y C, et al. Wintertime optical properties of primary and secondary brown carbon at a regional site in the north China plain[J]. Environmental Science & Technology, 2019, 53(21): 12389-12397.
|
[37] |
ZHU C S, QU Y, HUANG H, et al. Black carbon and secondary brown carbon, the dominant light absorption and direct radiative forcing contributors of the atmospheric aerosols over the tibetan plateau[J]. Geophysical research letters, 2021, 48(11): 1-9.
|
[38] |
SINGH S, GOKHALE S. Source apportionment and light absorption properties of black and brown carbon aerosols in the Brahmaputra River valley region[J]. Urban Climate, 2021, 39: 1-12.
|