[1] |
KOBETIČOVÁ K, ČERNÝ R. Terrestrial eutrophication of building materials and buildings: An emerging topic in environmental studies [J]. The Science of the Total Environment, 2019, 689: 1316-1328. doi: 10.1016/j.scitotenv.2019.06.423
|
[2] |
WANG H J, DAI M H, LIU J W, et al. Eutrophication-driven hypoxia in the East China Sea off the Changjiang Estuary [J]. Environmental Science & Technology, 2016, 50(5): 2255-2263.
|
[3] |
WEBER T, WISEMAN N A, KOCK A. Global ocean methane emissions dominated by shallow coastal waters [J]. Nature Communications, 2019, 10(1): 4584. doi: 10.1038/s41467-019-12541-7
|
[4] |
ZHANG L, LIU C, HE K, et al. Dramatic temporal variations in methane levels in black bloom prone areas of a shallow eutrophic lake [J]. Science of the Total Environment, 2021, 767: 144868. doi: 10.1016/j.scitotenv.2020.144868
|
[5] |
NICHOLSON D P, MICHEL A P M, WANKEL S D, et al. Rapid mapping of dissolved methane and carbon dioxide in coastal ecosystems using the ChemYak autonomous surface vehicle [J]. Environmental Science & Technology, 2018, 52(22): 13314-13324.
|
[6] |
BEAULIEU J J, SMOLENSKI R L, NIETCH C T, et al. High methane emissions from a midlatitude reservoir draining an agricultural watershed [J]. Environmental Science & Technology, 2014, 48(19): 11100-11108.
|
[7] |
THEODORAKIS P E, CHE Z Z. Surface nanobubbles: Theory, simulation, and experiment. A review [J]. Advances in Colloid and Interface Science, 2019, 272: 101995. doi: 10.1016/j.cis.2019.101995
|
[8] |
WANG S, LIU Y S, LYU T, et al. Aquatic macrophytes in morphological and physiological responses to the nanobubble technology application for water restoration [J]. ACS ES& T Water, 2021, 1(2): 376-387.
|
[9] |
LYU T, WU S B, MORTIMER R J G, et al. Nanobubble technology in environmental engineering: Revolutionization potential and challenges [J]. Environmental Science & Technology, 2019, 53(13): 7175-7176.
|
[10] |
苗肖君, 陈俊, 王蕾, 等. 氧微纳气泡改性矿物对水体的增氧效果及机理 [J]. 环境保护科学, 2019, 45(6): 44-52.
MIAO X J, CHEN J, WANG L, et al. Oxygenation effect and mechanisms of oxygen micro/nano-bubble (MNBs) modified minerals [J]. Environmental Protection Science, 2019, 45(6): 44-52(in Chinese).
|
[11] |
ZHANG H G, LYU T, LIU L X, et al. Exploring a multifunctional geoengineering material for eutrophication remediation: Simultaneously control internal nutrient load and tackle hypoxia [J]. Chemical Engineering Journal, 2021, 406: 127206. doi: 10.1016/j.cej.2020.127206
|
[12] |
ZHANG H G, CHEN J, HAN M L, et al. Anoxia remediation and internal loading modulation in eutrophic lakes using geoengineering method based on oxygen nanobubbles [J]. The Science of the Total Environment, 2020, 714: 136766. doi: 10.1016/j.scitotenv.2020.136766
|
[13] |
MEEGODA J N, HEWAGE S A, BATAGODA J H. Application of the diffused double layer theory to nanobubbles [J]. Langmuir, 2019, 35(37): 12100-12112. doi: 10.1021/acs.langmuir.9b01443
|
[14] |
HEWAGE S A, KEWALRAMANI J, MEEGODA J N. Stability of nanobubbles in different salts solutions [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 609: 125669. doi: 10.1016/j.colsurfa.2020.125669
|
[15] |
董颖博, 张圆, 林海, 等. 焙烧温度对天然沸石物化性能的影响 [J]. 中国有色金属学报, 2017, 27(7): 1520-1526.
DONG Y B, ZHANG Y, LIN H, et al. Effects of calcination temperature on physicochemical properties of natural zeolite [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(7): 1520-1526(in Chinese).
|
[16] |
WANG L, MIAO X J, ALI J, et al. Quantification of oxygen nanobubbles in particulate matters and potential applications in remediation of anaerobic environment [J]. ACS Omega, 2018, 3(9): 10624-10630. doi: 10.1021/acsomega.8b00784
|
[17] |
中华人民共和国国家环境保护总局. 中华人民共和国环保行业标准: 水质 硫酸盐的测定 铬酸钡分光光度法 HJ/T 342—2007[S]. 北京: 中国环境科学出版社, 2007.
State Environmental Protection Administration of the People's Republic of China. Environmental Protection Standard of the People's Republic of China: Water quality-Determination of sulfate-Barium chromate spectrophotometry. HJ/T 342—2007[S]. Beijing: China Environment Science Press, 2007(in Chinese).
|
[18] |
臧昆鹏, 王菊英, 赵化德, 等. 顶空平衡-双通道气相色谱法测定海水中溶解态甲烷和氧化亚氮 [J]. 环境化学, 2014, 33(12): 2094-2101. doi: 10.7524/j.issn.0254-6108.2014.12.018
ZANG K P, WANG J Y, ZHAO H D, et al. Simultaneous determination of dissolved CH4 and N2O in seawater using head space-dual channel GC system [J]. Environmental Chemistry, 2014, 33(12): 2094-2101(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.12.018
|
[19] |
ZHANG H G, LYU T, BI L, et al. Combating hypoxia/Anoxia at sediment-water interfaces: A preliminary study of oxygen nanobubble modified clay materials [J]. Science of the Total Environment, 2018, 637/638: 550-560. doi: 10.1016/j.scitotenv.2018.04.284
|
[20] |
BASTVIKEN D, EJLERTSSON J, TRANVIK L. Measurement of methane oxidation in lakes: A comparison of methods [J]. Environmental Science & Technology, 2002, 36(15): 3354-3361.
|
[21] |
GUO X P, YANG Y, NIU Z S, et al. Characteristics of microbial community indicate anthropogenic impact on the sediments along the Yangtze Estuary and its coastal area, China [J]. Science of the Total Environment, 2019, 648: 306-314. doi: 10.1016/j.scitotenv.2018.08.162
|
[22] |
JI X N, LIU C B, ZHANG M Y, et al. Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubbles [J]. Water Research, 2020, 173: 115563. doi: 10.1016/j.watres.2020.115563
|
[23] |
SAMKAMALESON A, GONSALVES M J. Role of sulfur-oxidizing bacteria on the ecology in tropical mangrove sediments [J]. Regional Studies in Marine Science, 2019, 28: 100574. doi: 10.1016/j.rsma.2019.100574
|
[24] |
CHEN M, JIAO Y Y, ZHANG Y Q, et al. Succession of sulfur bacteria during decomposition of cyanobacterial bloom biomass in the shallow Lake Nanhu: An ex situ mesocosm study [J]. Chemosphere, 2020, 256: 127101. doi: 10.1016/j.chemosphere.2020.127101
|
[25] |
ZHOU Y Q, XIAO Q T, YAO X L, et al. Accumulation of terrestrial dissolved organic matter potentially enhances dissolved methane levels in eutrophic lake Taihu, China [J]. Environmental Science & Technology, 2018, 52(18): 10297-10306.
|
[26] |
李思琦, 臧昆鹏, 宋伦. 湿地甲烷代谢微生物产甲烷菌和甲烷氧化菌的研究进展 [J]. 海洋环境科学, 2020, 39(3): 488-496. doi: 10.12111/j.mes20200325
LI S Q, ZANG K P, SONG L. Review on methanogens and methanotrophs metabolised by methane in wetland [J]. Marine Environmental Science, 2020, 39(3): 488-496(in Chinese). doi: 10.12111/j.mes20200325
|
[27] |
GÜLZOW W, GRÄWE U, KEDZIOR S, et al. Seasonal variation of methane in the water column of Arkona and Bornholm Basin, western Baltic Sea [J]. Journal of Marine Systems, 2014, 139: 332-347. doi: 10.1016/j.jmarsys.2014.07.013
|
[28] |
SCHELLER S, GOENRICH M, THAUER R K, et al. Methyl-coenzyme M reductase from methanogenic Archaea: Isotope effects on the formation and anaerobic oxidation of methane [J]. Journal of the American Chemical Society, 2013, 135(40): 14975-14984. doi: 10.1021/ja406485z
|
[29] |
WONGNATE T, SLIWA D, GINOVSKA B, et al. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase [J]. Science, 2016, 352(6288): 953-958. doi: 10.1126/science.aaf0616
|
[30] |
NIU C Z, HE Z X, GE Y, et al. Effect of plant species richness on methane fluxes and associated microbial processes in wetland microcosms [J]. Ecological Engineering, 2015, 84: 250-259. doi: 10.1016/j.ecoleng.2015.09.007
|
[31] |
SHI W Q, PAN G, CHEN Q W, et al. Hypoxia remediation and methane emission manipulation using surface oxygen nanobubbles [J]. Environmental Science & Technology, 2018, 52(15): 8712-8717.
|