[1] ZHAO F Z, JU F, HUANG K L, et al. Comprehensive insights into the key components of bacterial assemblages in pharmaceutical wastewater treatment plants[J]. Science of the Total Environment, 2019, 651: 2148-2157. doi: 10.1016/j.scitotenv.2018.10.101
[2] 张静, 张守敬, 刘春, 等. 工业废水水质对微气泡臭氧化深度处理影响[J]. 环境科学, 2020, 41(4): 1752-1760.
[3] 赵立军, 郭磊, 陈进富, 等. 抗生素废水的GC-MS分析与显色物质的初步确定[J]. 环境工程学报, 2009, 3(10): 1830-1834.
[4] FARIAS T, HAJIZADEH S, YE L. Cryogels with high cisplatin adsorption capacity: Towards removal of cytotoxic drugs from wastewater[J]. Separation and Purification Technology, 2020, 235: 116203. doi: 10.1016/j.seppur.2019.116203
[5] ISARI A A, MEHREGAN M, MEHREGAN S, et al. Sono-photocatalytic degradation of tetracycline and pharmaceutical wastewater using WO3 /CNT heterojunction nanocomposite under US and visible light irradiations: A novel hybrid system[J]. Journal of Hazardous Materials, 2020, 390: 122050. doi: 10.1016/j.jhazmat.2020.122050
[6] PRASERTKULSAK S, CHIEMCHAISRI C, CHIEMCHAISRI W, et al. Removals of pharmaceutical compounds at different sludge particle size fractions in membrane bioreactors operated under different solid retention times[J]. Journal of Hazardous Materials, 2019, 368: 124-132. doi: 10.1016/j.jhazmat.2019.01.050
[7] CAI Q Q, WU M Y, LI R, et al. Potential of combined advanced oxidation: Biological process for cost-effective organic matters removal in reverse osmosis concentrate produced from industrial wastewater reclamation: Screening of AOP pre-treatment technologies[J]. Chemical Engineering Journal, 2020, 389: 123419. doi: 10.1016/j.cej.2019.123419
[8] 张静, 杜亚威, 刘晓静, 等. 臭氧微气泡处理酸性大红3R废水特性研究[J]. 环境科学, 2015, 36(2): 584-589.
[9] WU C, LI P, XIA S J, et al. The role of interface in microbubble ozonation of aromatic compounds[J]. Chemosphere, 2019, 220: 1067-1074. doi: 10.1016/j.chemosphere.2018.12.174
[10] SWART B, ZHAO Y, KHAKU M, et al. In situ characterisation of size distribution and rise velocity of microbubbles by high-speed photography[J]. Chemical Engineering Science, 2020, 225: 115836. doi: 10.1016/j.ces.2020.115836
[11] FAN W, ZHOU Z, WANG W, et al. Environmentally friendly approach for advanced treatment of municipal secondary effluent by integration of micro-nano bubbles and photocatalysis[J]. Journal of Cleaner Production, 2019, 237(Nov.10): 117821-117828.
[12] HU L, XIA Z. Application of ozone micro-nano-bubbles to groundwater remediation[J]. Journal of Hazardous Materials, 2018, 342: 446-453. doi: 10.1016/j.jhazmat.2017.08.030
[13] LIU Y X, ZHOU Y P, WANG T Z, et al. Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality[J]. Journal of Cleaner Production, 2019, 222: 835-843. doi: 10.1016/j.jclepro.2019.02.208
[14] ABDISA J, PALLAB G. A comparative study on the removal of dimethyl sulfoxide from water using microbubbles and millibubbles of ozone[J]. Journal of Water Process Engineering, 2021, 40: 101937. doi: 10.1016/j.jwpe.2021.101937
[15] JOTHINATHAN L. CAI Q Q. ONG S L. et al. Organics removal in high strength petrochemical wastewater with combined microbubble-catalytic ozonation process[J]. Chemosphere, 2021, 263: 127980. doi: 10.1016/j.chemosphere.2020.127980
[16] DENG S H, LAKSHMI J, CAI Q Q, et al. FeOx@GAC catalyzed microbubble ozonation coupled with biological process for industrial phenolic wastewater treatment: Catalytic performance, biological process screening and microbial characteristics[J]. Water research, 2021, 190: 116687. doi: 10.1016/j.watres.2020.116687
[17] LIU Y, WANG S, SHI L, et al. Enhanced degradation of atrazine by microbubble ozonation[J]. Environmental Science:Water Research and Technology, 2020, 6: 227-233.
[18] ZHANG J, HUANG G Q, LIU C, et al. Synergistic effect of microbubbles and activated carbon on the ozonation treatment of synthetic dyeing wastewater[J]. Separation and Purification Technology, 2018, 201: 10-18. doi: 10.1016/j.seppur.2018.02.003
[19] HUANG Y, YANG T, LIANG M, et al. Ni-Fe layered double hydroxides catalized ozonation of synthetic wastewater containing Bisphenol A and municipal secondary effluent[J]. Chemosphere, 2019, 235: 143-152. doi: 10.1016/j.chemosphere.2019.06.162
[20] SHI Y, LI S, WANG L, et al. Compositional characteristics of dissolved organic matter in pharmaceutical wastewater effluent during ozonation[J]. Science of the Total Environment, 2021, 21: 146278.
[21] EL HASSANI K, KALNINA D, Turks M, et al. Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst[J]. Separation and Purification Technology, 2019, 210: 764-774. doi: 10.1016/j.seppur.2018.08.074
[22] FU X, HUANG Y, WANG Y, et al. Ozonation catalyzed by CoxFe1 layered double hydroxide for the degradation of P -toluenesulfonic acid[J]. Ozone Science and Engineering, 2020, 5: 1766946.
[23] 张志君, 何婷. 重铬酸盐法测定水中化学需氧量[J]. 中国科技信息, 2020(13): 49.
[24] 李瑞霞. 利用发光细菌法对制药废水生物急性毒性的研究[D]. 北京: 清华大学, 2013.
[25] LEENHEER J A. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters[J]. Environmental Science & Technology, 1981, 15(5): 578-588.
[26] ZHANG T, LU J F, MA J, et al. Comparative study of ozonation and synthetic goethite-catalyzed ozonation of individual NOM fractions isolated and fractionated from a filtered river water[J]. Water Research, 2008, 42(6-7): 1563-1570. doi: 10.1016/j.watres.2007.11.005
[27] FU L Y, WU C Y, ZHOU Y X, et al. Ozonation reactivity characteristics of dissolved organic matter in secondary petrochemical wastewater by single ozone, ozone/H2O2, and ozone/catalyst[J]. Chemosphere, 2019, 233: 34-43. doi: 10.1016/j.chemosphere.2019.05.207
[28] GU Z P, CHEN W M, LI Q B, et al. Kinetics study of dinitrodiazophenol industrial wastewater treatment by a microwave-coupled ferrous-activated persulfate process[J]. Chemosphere, 2019, 215: 82-91. doi: 10.1016/j.chemosphere.2018.10.009
[29] TAMBOLI A H, JADHAV A R, CHUNG W, et al. Structurally modified cerium doped hydrotalcite-like precursor as efficient catalysts for hydrogen production from sodium borohydride hydrolysis[J]. Energy, 2015, 93: 955-962. doi: 10.1016/j.energy.2015.09.059
[30] ZHANG H, HE Y L, LAI L D, et al. Catalytic ozonation of bisphenol A in aqueous solution by Fe3O4-MnO2 magnetic composites: Performance, transformation pathways and mechanism[J]. Separation and Purification Technology, 2019, 245: 116449.
[31] 那广水, 张月梅, 陈彤, 等. 发光细菌法评价排污口污水中总有机污染物毒性[J]. 中国环境监测, 2010, 26(5): 61-64. doi: 10.3969/j.issn.1002-6002.2010.05.017
[32] SWIETLIK J, DABROWSKA A, RACZYK-STANISLAWIAK U, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone[J]. Water Research, 2004, 38(3): 547-558. doi: 10.1016/j.watres.2003.10.034
[33] GUNTEN U V. Ozonation of drinking water: part I. Oxidation kinetics and product formation[J]. Water Research, 2003, 37(7): 1443-1467. doi: 10.1016/S0043-1354(02)00457-8
[34] GUO L, LU M, LI Q, et al. Three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy with regional integration analysis for assessing waste sludge hydrolysis treated with multi-enzyme and thermophilic bacteria[J]. Bioresource Technology, 2014, 171: 22-28. doi: 10.1016/j.biortech.2014.08.025
[35] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346. doi: 10.1016/0304-4203(95)00062-3
[36] CHENG Y Y, WANG S L, HU S B, et al. The fluorescence characteristics of dissolved organic matter(DOM)in the seagrass ecosystem from hainan by fluorescence excitation-emission matrix spectroscopy[J]. Spectroscopy & Spectral Analysis, 2015, 35(1): 141-145.
[37] LI W, XU Z, WU Q, et al. Characterization of fluorescent-dissolved organic matter and identification of specific fluorophores in textile effluents[J]. Environmental Science & Pollution Research International, 2015, 22(6): 4183.
[38] COBLE P G. Marine optical biogeochemistry: The chemistry of ocean color[J]. Cheminform, 2007, 38(2): 402-418.