[1] DRISCOLL C T, MASON R P, CHAN H M, et al. Mercury as a global pollutant: sources, pathways, and effects [J]. Environmental Science & Technology, 2013, 47(10): 4967-4983.
[2] UNEP. Global Mercury Assessment [R]. Geneva, Switzerland, UNEP Chemicals and Health Branch.
[3] COLOMBO M J, HA J, REINFELDER J R, et al. Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132 [J]. Geochimica Et Cosmochimica Acta, 2013, 112(7): 166-177.
[4] HU H, LIN H, ZHENG W, et al. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria [J]. Nature Geoscience, 2013, 6(9): 751-754. doi: 10.1038/ngeo1894
[5] PONGPRUEKSA P, LIN C J, LINDBERG S E, et al. Scientific uncertainties in atmospheric mercury models Ⅲ: Boundary and initial conditions, model grid resolution, and Hg(Ⅱ) reduction mechanism [J]. Atmospheric Environment, 2008, 42(8): 1828-1845. doi: 10.1016/j.atmosenv.2007.11.020
[6] SEIGNEUR C, VIJAYARAGHAVAN K, LOHMAN K, et al. Modeling the atmospheric fate and transport of mercury over North America: Power plant emission scenarios [J]. Fuel Processing Technology, 2004, 85(6-7): 441-450. doi: 10.1016/j.fuproc.2003.11.001
[7] LIN C J, PEHKONEN S O. The chemistry of atmospheric mercury: A review [J]. Atmospheric Environment, 1999, 33(13): 2067-2079. doi: 10.1016/S1352-2310(98)00387-2
[8] SAIZ-LOPEZ A, SITKIEWICZ S, ROCA-SANJUÁN D, et al. Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition [J]. Nature Communications, 2018, 9(1): 4796. doi: 10.1038/s41467-018-07075-3
[9] MUNTHE J, XIAO Z F, LINDQVIST O. The aqueous reduction of divalent mercury by sulfite [J]. Water Air & Soil Pollution, 1991, 56(1): 621-630.
[10] LIN S I, ARIYA P A. Reduction of oxidized mercury species by dicarboxylic acids (C2-C4): Kinetic and product studies [J]. Environmental Science & Technology, 2008, 42(14): 5150-5155.
[11] LIN C J, PEHKONEN S O. Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol [J]. Atmospheric Environment, 1997, 31(24): 4125-4137. doi: 10.1016/S1352-2310(97)00269-0
[12] ALBERTSJJ S J E, MILLER R W, NUTTER D E. Elemental mercury evolution mediated by humic acid [J]. Science, 1974, 184(4139): 895-896. doi: 10.1126/science.184.4139.895
[13] TPERETYAZH K O, CHARLET L, MURESAN B. Formation of dissolved gaseous mercury in a tropical lake (Petit-Saut reservoir, French Guiana) [J]. Science of the Total Environment, 2006, 364(1-3): 260-271. doi: 10.1016/j.scitotenv.2005.06.016
[14] MONPERRUS M, TESSIER E, AMOUROUX D, et al. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea [J]. Marine Chemistry, 2007, 107(1): 49-63. doi: 10.1016/j.marchem.2007.01.018
[15] KIM H, RHEE T S, HAHM D, et al. Contrasting distributions of dissolved gaseous mercury concentration and evasion in the North Pacific Subarctic Gyre and the Subarctic Front [J]. Oceanographic Research Papers, 2016, 110: 90-98. doi: 10.1016/j.dsr.2016.02.001
[16] BARKAY T, LIEBERT C, GILLMAN M. Environmental significance of the potential for mer(Tn21)-mediated reduction of Hg2+ to Hg0 in natural waters [J]. Applied & Environmental Microbiology, 1989, 55(5): 1196-1202.
[17] VANDAL G M, FITZGERALD W F, ROLFHUS K R, et al. Modeling the elemental mercury cycle in Pallette Lake, Wisconsin, USA [J]. Water Air & Soil Pollution, 1995, 80(1-4): 529-538.
[18] MASON R, MOREL F, HEMOND H. The role of microorganisms in elemental mercury formation in natural waters [J]. Heavy Metals in the Environment, 1995, 80(1-4): 775-787.
[19] POULAIN A J, NI CHADHAIN S M, ARIYA P A, et al. Potential for mercury reduction by microbes in the High Arctic [J]. Applied & Environmental Microbiology, 2007, 73(7): 2230-2238.
[20] BOUFFARD A, AMYOT M. Importance of elemental mercury in lake sediments [J]. Chemosphere, 2009, 74(8): 1098-1103. doi: 10.1016/j.chemosphere.2008.10.045
[21] GUEVARA S R, IEK S, REPINC U K, et al. Novel methodology for the study of mercury methylation and reduction in sediments and water using 197Hg radiotracer [J]. Analytical & Bioanalytical Chemistry, 2007, 387(6): 2185-2197.
[22] BRAZEAU M L, BLAIS J M, PATERSON A M, et al. Evidence for microbially mediated production of elemental mercury (Hg0) in subarctic lake sediments [J]. Applied Geochemistry, 2013, 37: 142-148. doi: 10.1016/j.apgeochem.2013.07.020
[23] CHOI H D, HOLSEN T M. Gaseous mercury emissions from unsterilized and sterilized soils: The effect of temperature and UV radiation [J]. Environmental Pollution, 2009, 157(5): 1673-1678. doi: 10.1016/j.envpol.2008.12.014
[24] PANNU R, SICILIANO S D, O'DRISCOLL N J. Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils [J]. Environmental Pollution, 2014, 193: 138-146. doi: 10.1016/j.envpol.2014.06.023
[25] POULIN B A A, GEORGE R, KATHRYN L, et al. Mercury transformation and release differs with depth and time in a contaminated riparian soil during simulated flooding [J]. Geochimica Et Cosmochimica Acta, 2016, 176: 118-138. doi: 10.1016/j.gca.2015.12.024
[26] OSTERWALDER S, HUANG J H, SHETAYA W H, et al. Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors [J]. Environmental Pollution, 2019, 250: 944-952. doi: 10.1016/j.envpol.2019.03.093
[27] LU Z, YUAN W, LUO K, et al. Litterfall mercury reduction on a subtropical evergreen broadleaf forest floor revealed by multi-element isotopes [J]. Environmental Pollution, 2020, 268: 115867.
[28] DOMMERGUE A, GAUCHARD P A, BOUTRON C F, et al. The fate of mercury species in a sub-arctic snowpack during snowmelt [J]. Geophysical Research Letters, 2003, 30(12): 1621-1625.
[29] LALONDE J D, DOYON M R, AUCLAIR J C. Photo-induced Hg(Ⅱ) reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada) [J]. Geophysical Research-Atmospheres, 2003, 108(6): 4200.
[30] MOLLER A K, AL-SOUD W, SORENSEN S J, et al. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic [J]. Fems Microbiology Ecology, 2011, 75(3): 390-401. doi: 10.1111/j.1574-6941.2010.01016.x
[31] BARKAY T, GILLMAN M. Environmental significance of the potential for mer-mediated reduction of Hg2+to Hg0 in natural-waters [J]. Applied & Environmental Microbiology, 1985, 55(5): 1196-1202.
[32] BARKAY T. Adaptation of aquatic microbial communities to Hg2+ stress [J]. Applied & Environmental Microbiology, 1987, 53(12): 2725-2732.
[33] BARKAY T, SAOUTER E, HORN J. Mercury biotransformations and their potential for remediation of mercury contamination [J]. Biodegradation, 1992, 3(2-3): 147-159. doi: 10.1007/BF00129080
[34] BARKAY T, MILLER S M, SUMMERS A O. Bacterial mercury resistance from atoms to ecosystems [J]. FEMS Microbiology Reviews, 2003, 27(2-3): 355-384. doi: 10.1016/S0168-6445(03)00046-9
[35] BENISON G C, PAOLA D, JACOB E, et al. A stable mercury-containing complex of the organomercurial lyase MerB: Catalysis product releaseand direct transfer to MerA [J]. Biochemistry, 2004, 43(26): 8333-8345. doi: 10.1021/bi049662h
[36] BOYD E S, TAMAR B. The mercury resistance operon: From an origin in a geothermal environment to an efficient detoxification machine [J]. Frontiers in Microbiology, 2012, 3: 349.
[37] IWAHORI K, TAKEUCH F, KAMIMURA K, et al. Ferrous ion-dependent volatilization of mercury by the plasma membrane of Thiobacillus ferrooxidans [J]. Applied & Environmental Microbiology, 2000, 66(9): 3823-3827.
[38] TSUYOSHI S, FUMIAKI T, ATSUNORI N, et al. Cytochrome c oxidase purified from a mercury-resistant strain of Acidithiobacillus ferrooxidans Volatilizes Mercury [J]. Bioscience & Bioengineering, 2001, 92(1): 44-49.
[39] APPIA-AYME C, GUILIANI N, RATOUCHNIAK J, et al. Characterization of an operon encoding two c-type cytochromes, an aa(3)-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020 [J]. Environmental Microbiology Reports, 1999, 65(11): 4781-4787.
[40] SHI L, RICHARDSON D J, WANG Z, et al. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer [J]. ChemInform, 2009, 1(4): 220-227.
[41] HAIYAN H, HUI L, WANG Z, et al. Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA [J]. Environmental Science & Technology, 2013, 47(19): 10922-10930.
[42] MASON R P, REINFELDER J R, MOREL F. Uptake, toxicity, and trophic transfer of mercury in a coastal diatom [J]. Environmental Science & Technology, 1996(30): 1835-1845.
[43] GRÉGOIRE D S, POULAIN A J. A physiological role for Hg(Ⅱ) during phototrophic growth [J]. Nature Geoscience, 2016, 9(2): 121-125. doi: 10.1038/ngeo2629
[44] POULAIN A J, FINDLAY D, TELOR S, et al. Biological and photochemical production of dissolved gaseous mercury in a boreal lake [J]. Limnology Oceanography, 2004(49): 2265-2275.
[45] WIATROWSKI H A, WARD P M, BARKAY T. Novel reduction of mercury (Ⅱ) by mercury-sensitive dissimilatory metal reducing bacteria [J]. Environmental Science & Technology, 2006, 40(21): 6690-6696.
[46] LLOYDJRS V A, VAN-PRAAGH C V, LOVLEY D R. Direct and Fe(Ⅱ)-mediated reduction of technetium by Fe(Ⅲ)-reducing bacteria [J]. Applied & Environmental Microbiology, 2000, 66(9): 3743-3749.
[47] CHADHAIN S M N, SCHAEFER J K, CRANE S, et al. Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment [J]. Environmental Microbiology Reports, 2010, 8(10): 1746-1752.
[48] LU X, LIU Y, JOHS A, et al. Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis Bem [J]. Environmental Science & Technology, 2016, 50(8): 4366-4373.
[49] REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires [J]. Nature, 2005, 435(7045): 1098-1101. doi: 10.1038/nature03661
[50] DOIG P, TODD T, SASTRY P A, et al. Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells [J]. Infection & Immunity, 1988, 56(6): 1641-1646.
[51] NEVIN K P, LOVLEY D R. Lack of production of electron-shuttling compounds or solubilization of Fe(Ⅲ) during reduction of insoluble Fe(Ⅲ) oxide by Geobacter metallireducens [J]. Environmental Microbiology Reports, 2000, 66(5): 2248-2251.
[52] WOLFENDEN S, CHARNOCK J M, HILTON J, et al. Sulfide species as a sink for mercury in lake sediments [J]. Environmental Science & Technology, 2005, 39(17): 6644-6648.
[53] VÁZQUEZ-RODRíGUEZ A, HANSEL C, ZHANG T, et al. Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury [J]. Frontiers in Microbiology, 2015, 6: 596.
[54] 王莹, 李芳柏, 刘同旭. 微生物—矿物间半导体介导电子传递机制研究进展 [J]. 地球科学进展, 2016, 31(4): 347-356. doi: 10.11867/j.issn.1001-8166.2016.04.0347. WANG Y, LI F B, LIU T X. Advances in the semiconductor-mediated electron transfer mechanism at microbe-mineral interface [J]. Advances in Earth Science, 2016, 31(4): 347-356(in Chinese). doi: 10.11867/j.issn.1001-8166.2016.04.0347.
[55] LIU T, LI X, ZHANG W, et al. Fe(Ⅲ) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17 [J]. Journal of Colloid Interface Science, 2014, 423: 25-32. doi: 10.1016/j.jcis.2014.02.026
[56] VARGAS M, KASHEFI K, BLUNT-HARRIS E L, et al. Microbiological evidence for Fe(Ⅲ) reduction on early Earth [J]. Nature, 1998, 1(30): 565-571.