[1] 俞明锋, 付建英, 詹明秀, 等. 生活废弃物焚烧处置烟气中二(口恶)英排放特性研究 [J]. 环境科学学报, 2018, 38(5): 1983-1988. YU M F, FU J Y, ZHAN M X, et al. The research of PCDD/Fs emission characteristics in flue gas from municipal solid waste incinerations [J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1983-1988(in Chinese).
[2] SETYAN A, PATRICK M, WANG J. Very low emissions of airborne particulate pollutants measured from two municipal solid waste incineration plants in Switzerland [J]. Atmospheric Environment, 2017, 166(octa): 99-109.
[3] BEYLOT A, HOCHAR A, MICHEL P, et al. Municipal solid waste incineration in France: an overview of air pollution control techniques, emissions, and energy efficiency [J]. Journal of Industrial Ecology, 2018, 22(5): 1016-1026. doi: 10.1111/jiec.12701
[4] TIAN H Z, GAO J J, LU L, et al. Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China [J]. Environmental Science & Technology, 2012, 46(18): 10364-10371.
[5] ZHOU Q, YANG J X, LIU M M, et al. Toxicological risk by inhalation exposure of air pollution emitted from China's municipal solid waste incineration [J]. Environmental Science & Technology, 2018, 52(20): 11490-11499.
[6] YANG L L, ZHENG M H, ZHU Q Q, et al. Inventory of polychlorinated naphthalene emissions from waste incineration and metallurgical sources in China [J]. Environmental Science & Technology, 2020, 54(2): 842-850.
[7] HUANG B B, LEI C, WEI C H, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies [J]. Environment International, 2014, 71: 118-138. doi: 10.1016/j.envint.2014.06.013
[8] 付昱萌, 杨红刚, 卢民瑜, 等. 鄂州市大气VOCs污染特征及来源解析 [J]. 环境科学, 2020, 41(3): 1085-1092. FU Y M, YANG H G, LU M Y, et al. Analysis of pollution characteristics and sources of atmospheric VOCs in Ezhou city [J]. Environmental Science, 2020, 41(3): 1085-1092(in Chinese).
[9] VARUTBANGKUL V, BRECHTEL F J, BAHREINI R, et al. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and Related Compounds[J]. Atmospheric Chemistry and Physics 2006, 6: 2367–2388.
[10] LIU S L, WANG B G, HE J, et al. Source fingerprints of volatile organic compounds emitted from a municipal solid waste incineration power plant in Guangzhou, China [J]. 2011 International Conference of Environmental Science and Engineering. Procedia Environmental Sciences, 2012, 12: 103-115.
[11] 任美慧, 樊芸, 王胜, 等. SCR装置对焦炉煤气燃烧废气中PCDD/Fs、PCBs和PCNs的协同脱除 [J]. 环境科学, 2019, 40(1): 143-148. REN M H, FAN Y, WANG S, et al. Simultaneous removal of polychlorinated dibenzo-p-dioxins/dibenzofurans, polychlorinated biphenyls, and polychlorinated naphthalenes from flues gases from coke gas burning using selective catalytic reduction equipment [J]. Environmental Science, 2019, 40(1): 143-148(in Chinese).
[12] LIU X L, WANG J, WANG X, et al. Simultaneous removal of PCDD/Fs and NOx from the flue gas of a municipal solid waste incinerator with a pilot plant [J]. Chemosphere, 2015, 133: 90-96. doi: 10.1016/j.chemosphere.2015.04.009
[13] GALLASTEGI-VILLA M, ARANZABAL A, GONZALEZ-MARCOS J A, et al. Tailoring dual redox-acid functionalities in VOx/TiO2/ZSM5 catalyst for simultaneous abatement of PCDD/Fs and NOx from municipal solid waste incineration [J]. Applied Catalysis B:Environmental, 2017, 205: 310-318. doi: 10.1016/j.apcatb.2016.12.020
[14] 陈进生, 袁东星, 洪有为, 等. 烟气催化脱硝装置对多环芳烃排放特性的影响 [J]. 燃料化学学报, 2007, 35(6): 722-726. doi: 10.1016/S1872-5813(08)60006-7 CHEN J S, YUAN D X, HONG Y W, et al. Effect of catalytic de-Nox device on the emission characteristics of polycyclic aromatic hydrocarbon in flue gas [J]. Journal of Fuel Chemistry and Technology, 2007, 35(6): 722-726(in Chinese). doi: 10.1016/S1872-5813(08)60006-7
[15] BUSCA G, BALDI M, PISTARINO C, et al. Evaluation of V2O5-WO3-TiO2 and alternative SCR catalysts in the abatement of VOCs [J]. Catalysis Today, 1999, 53(4): 525-533. doi: 10.1016/S0920-5861(99)00140-6
[16] FINOCCHIO E, BALDI M, BUSCA G, et al. Study of the abatement of VOC over V2O5-WO3-TiO2 and alternative SCR catalysts [J]. Catalysis Today, 2000, 59(3): 261-268.
[17] CHAGGER H K, JONES J M, POURKASHANIAN M, et al. The formation of VOC, PAH and dioxins during incineration [J]. Process Safety and Environmental Protection, 2000, 78: 53-59. doi: 10.1205/095758200530457
[18] CHEN J C, HUANG J S, CHEN C M, et al. Emission characteristics of PAHs, benzene and phenol group hydrocarbons in O2/RFG waste incineration processes [J]. Fuel, 2008, 87: 2787-2797. doi: 10.1016/j.fuel.2008.02.012
[19] LIU J, WANG J W, CHENG J, et al. Distribution and emission of speciated volatile organic compounds from a coal-fired power plant with ultra-low emission technologies [J]. Journal of Cleaner Production, 2020, 264: 121686. doi: 10.1016/j.jclepro.2020.121686
[20] CHENG J, ZHANG Y S, WANG T, et al. Emission of volatile organic compounds (VOCs) during coal combustion at different heating rates [J]. Fuel, 2018, 225: 554-562. doi: 10.1016/j.fuel.2018.03.185
[21] JAY K, STIEGLITZ L. Identification and quantification of volatile organic components in emissions of waste incineration plants [J]. Chemosphere, 1995, 30(7): 1249-1260. doi: 10.1016/0045-6535(95)00021-Y
[22] 陈海秀, 李军, 李冠华. 固体吸附-热脱附/气相色谱-质谱法测定固定污染源废气中50种挥发性有机物 [J]. 环境监控与预警, 2020, 12(1): 36-40. CHEN H X, LI J, LI G H. Determination of 50 volatile organic compounds in stationary source emission [J]. Environmental Monitoring and Forewarning, 2020, 12(1): 36-40(in Chinese).