[1] 戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020, 72(6): 30-34.
[2] WEI H, GAO B, REN J, et al. Coagulation/flocculation in dewatering of sludge: A review[J]. Water Research, 2018, 143(15): 608-631.
[3] 林伟雄, 顾海奇, 武纯, 等. 响应面法优化化学沉淀螯合生物絮凝处理含镍废水[J]. 环境工程学报, 2021, 15(2): 493-500. doi: 10.12030/j.cjee.202005139
[4] ABU-ORF M, Muller C D, Park C, et al. Innovative Technologies to Reduce Water Content of Dewatered Municipal Residuals[J]. Journal of Residuals Science and Technology, 2004, 1(2): 83-91.
[5] YEN P S, CHEN L C, CHIEN C Y, et al. Network strength and dewaterability of flocculated activated sludge[J]. Water Research, 2002, 36(3): 0-550.
[6] AYOL A, DENTEL S K. Enzymatic treatment effects on dewaterability of anaerobically digested biosolids-II: laboratory characterizations of drainability and filterability[J]. Process Biochemistry, 2005, 40(7): 2435-2442. doi: 10.1016/j.procbio.2004.09.024
[7] DENTEL S K, Dursun D. Shear sensitivity of digested sludge: Comparison of methods and application in conditioning and dewatering[J]. Water Research, 2009, 43(18): 4617-4625. doi: 10.1016/j.watres.2009.07.015
[8] OERMECI B. Optimization of a full-scale dewatering operation based on the rheological characteristics of wastewater sludge[J]. Water Research, 2007, 41(6): 1243-1252. doi: 10.1016/j.watres.2006.12.043
[9] WANG Y L, DENTEL S K. The effect of high speed mixing and polymer dosing rates on the geometric and rheological characteristics of conditioned anaerobic digested sludge (ADS)[J]. Water Research, 2010, 44(20): 6041-6052. doi: 10.1016/j.watres.2010.07.068
[10] OLIVEIRA I, REED J P, ABU-ORF M, et al. The potential use of shear viscosity to monitor polymer conditioning of sewage sludge digestates[J]. Water Research, 2016, 105(15): 320-330.
[11] ESHTIAGHI N, MARKIS F, YAP S D, et al. Rheological characterisation of municipal sludge: A review[J]. Water Research, 2013, 47(15): 5493-5510. doi: 10.1016/j.watres.2013.07.001
[12] NIYA S, HOORFAR M. Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique – A review[J]. Journal of Power Sources, 2013, 240: 281-293. doi: 10.1016/j.jpowsour.2013.04.011
[13] KRUKIEWICZ K. Electrochemical impedance spectroscopy as a versatile tool for the characterization of neural tissue: a mini review[J]. Electrochemistry Communications, 2020, 116: 106742. doi: 10.1016/j.elecom.2020.106742
[14] HABTE B T, JIANG F. Effect of microstructure morphology on Li-ion battery graphite anode performance: Electrochemical impedance spectroscopy modeling and analysis[J]. Solid State Ionics, 2018, 314: 81-91. doi: 10.1016/j.ssi.2017.11.024
[15] NAVA O, MURRIETA-RICO F N, ME MARTINEZ-ROSAS, et al. Evaluation of electrochemical properties of zinc oxide based semiconductor nanoparticles biosynthesized with Mentha spicata for optoelectronic applications[J]. Materials Letters, 2020, 275: 128101. doi: 10.1016/j.matlet.2020.128101
[16] DIEUDE-FAUVEL E, BAUDEZ J C, COUSSOT P, et al. Correlation between electrical and rheological measurements on sewage sludge[J]. Practice and Technology, 2007. 2(1).
[17] SEGALEN C, DIEUDE-FAUVEL E, CLEMENT J, et al. Relationship between electrical and rheological properties of sewage sludge-Impact of temperature[J]. Water Research, 2015, 73(15): 1-8.
[18] SEGALEN C, DIEUDE-FAUVEL E, BAUDEZ J C. Electrical and rheological properties of sewage sludge-Impact of the solid content[J]. Water Research, 2015, 82(1): 25-36.
[19] DIEUDE-FAUVEL E, HERITIER P, CHANET M, et al. Modelling the rheological properties of sludge during anaerobic digestion in a batch reactor by using electrical measurements[J]. Water Research, 2014, 51(15): 104-112. doi: 10.1016/j.watres.2013.12.018
[20] 李婷, 王毅力, 冯晶, 等. 活性污泥的理化性质与絮凝调理投药量的关系[J]. 环境科学, 2012, 33(3): 889-895.
[21] GREENBERG A E, Trussell R R, Clesceri L S, et al. Standard methods for the examination of water and wastewater: supplement to the sixteenth edition[J]. American Journal of Public Health and the Nations Health, 2005, 56(3): 387.
[22] ZHANG D X, WANG Y L, LI J, et al. Electrical impedance spectroscopy as a potential tool to investigate the structure and size of aggregates during water and wastewater treatment[J]. Journal of Colloid and Interface Science, 2022, 606: 500-509. doi: 10.1016/j.jcis.2021.08.038
[23] 张达鑫. 适度氧化—原位絮凝调理中污泥介电谱分形原理构建及应用研究[D]. 北京: 北京林业大学, 2021.
[24] 涂玉. 污泥调理中混凝剂对污泥脱水性能影响研究[D]. 南昌: 南昌大学, 2008.
[25] 曾祥国. 剩余污泥调理优化及脱水性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
[26] 李闯, 范颖芳, 李秋超. 基于电化学阻抗谱的偏高岭土水泥性能研究[J]. 建筑材料学报, 2020, 23(4): 755-762. doi: 10.3969/j.issn.1007-9629.2020.04.003
[27] CAO B D, ZHANG T, ZHANG W J, et al. Enhanced technology based for sewage sludge deep dewatering: A critical review[J]. Water Research, 2021, 189(1): 116650. doi: 10.1016/j.watres.2020.116650
[28] LI E R, WANG Y L, ZHANG D X, et al. Siderite/PMS conditioning-pressurized vertical electro-osmotic dewatering process for activated sludge volume reduction: evolution of protein secondary structure and typical amino acid in EPS[J]. Water Research, 2021: 117352.
[29] ZHANG D X, WANG Y L, GAO H Y, et al. Variations in macro and micro physicochemical properties of activated sludge under a moderate oxidation-in situ coagulation conditioning: relationship between molecular structure and dewaterability[J]. Water research, 2019, 155(15): 245-254. doi: 10.1016/j.watres.2019.02.047
[30] WU B R, NI B J, HORVAT K, et al. Occurrence state and molecular structure analysis of extracellular proteins with implications on the dewaterability of waste-activated sludge[J]. Environmental science and technology, 2017, 51(16): 9235-9243.
[31] ZHANG J S, LI N, DAI X H, et al. Enhanced dewaterability of sludge during anaerobic digestion with thermal hydrolysis pretreatment: new insights through structure evolution[J]. Water Research, 2018, 131(15): 177-185. doi: 10.1016/j.watres.2017.12.042
[32] 肖衍繁, 李文斌. 物理化学: 第2版[M]. 天津大学出版社, 2004.
[33] PARK S H, HWANG J, PARK G S, et al. Modeling the electrical resistivity of polymer composites with segregated structures[J]. Nature communications, 2019, 10(1): 1-11. doi: 10.1038/s41467-018-07882-8
[34] KOPELMAN R. Fractal reaction kinetics[J]. Science, 1988, 241(4873): 1620-1626. doi: 10.1126/science.241.4873.1620