[1] FRUMIN G T, GILDEEVA I M. Eutrophication of water bodies: A global environmental problem[J]. Russian Journal of General Chemistry, 2014, 84(13): 2483-2488. doi: 10.1134/S1070363214130015
[2] OBRIST-FARNER J, BRENNER M, CURTIS J H, et al. Recent onset of eutrophication in lake izabal, the largest water body in guatemala[J]. Journal of Paleolimnology, 2019, 62(4): 359-372. doi: 10.1007/s10933-019-00091-3
[3] 王振兴, 李向全, 侯新伟, 等. 地下水硝酸盐污染的生物修复技术研究进展[J]. 环境科学与技术, 2012, 35(S1): 163-166.
[4] 李祥, 马航, 黄勇, 等. 异养与硫自养反硝化协同处理高硝氮废水特性研究[J]. 环境科学, 2016, 37(7): 2646-2651.
[5] XU Z, CHEN X, LI H, et al. Combined heterotrophic and autotrophic system for advanced denitrification of municipal secondary effluent in full-scale plant and bacterial community analysis[J]. Science of the Total Environment, 2020, 717: 136981-136981. doi: 10.1016/j.scitotenv.2020.136981
[6] LI R, FENG C, HU W, et al. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation[J]. Water Research, 2016, 89: 171-179. doi: 10.1016/j.watres.2015.11.044
[7] 王巧茹, 史旋, 宋伟, 等. 碳源强化下的硫自养/异养反硝化协同作用[J]. 环境工程学报, 2019, 13(11): 2593-2600. doi: 10.12030/j.cjee.201812042
[8] QIU Y Y, ZHANG L, MU X, et al. Overlooked pathways of denitrification in a sulfur-based denitrification system with organic supplementation[J]. Water Research, 2020: 169.
[9] OH S E, YOO Y B, YOUNG J C, et al. Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions[J]. Journal of Biotechnology, 2001, 92(1): 1-8. doi: 10.1016/S0168-1656(01)00344-3
[10] 邵博. 微氧强化自养-异养联合反硝化处理含不同硫氮比废水的效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[11] FAN F, ZHANG B, LIU J, et al. Towards sulfide removal and sulfate reducing bacteria inhibition: Function of biosurfactants produced by indigenous isolated nitrate reducing bacteria[J]. Chemosphere, 2020: 238.
[12] 苏雪莹, 付昆明. 丝状菌在污水处理中的控制与应用[J]. 水处理技术, 2015, 41(9): 19-23.
[13] MIAO L, LIU Z. Microbiome analysis and -omics studies of microbial denitrification processes in wastewater treatment: Recent advances[J]. Science China-Life Sciences, 2018, 61(7): 753-761. doi: 10.1007/s11427-017-9228-2
[14] LIU J, ZHANG P, LI H, et al. Denitrification of landfill leachate under different hydraulic retention time in a two-stage anoxic/oxic combined membrane bioreactor process: Performances and bacterial community[J]. Bioresource Technology, 2018, 250: 110-116. doi: 10.1016/j.biortech.2017.11.026
[15] XING W, LI J, LI P, et al. Effects of residual organics in municipal wastewater on hydrogenotrophic denitrifying microbial communities[J]. Journal of Environmental Sciences, 2018, 65: 262-270. doi: 10.1016/j.jes.2017.03.001
[16] JIANG X, YING D, YE D, et al. Electrochemical study of enhanced nitrate removal in wastewater treatment using biofilm electrode[J]. Bioresource Technology, 2018, 252: 134-142. doi: 10.1016/j.biortech.2017.12.078
[17] LEVEN L, ERIKSSON A R B, SCHNURER A. Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste[J]. Fems Microbiology Ecology, 2007, 59(3): 683-693. doi: 10.1111/j.1574-6941.2006.00263.x
[18] WAGNER M, HORN M. The planctomycetes, verrucomicrobia, chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance[J]. Current Opinion in Biotechnology, 2006, 17(3): 241-249. doi: 10.1016/j.copbio.2006.05.005
[19] WARD N L, CHALLACOMBE J F, JANSSEN P H, et al. Three genomes from the phylum acidobacteria provide insight into the lifestyles of these microorganisms in soils[J]. Applied and Environmental Microbiology, 2009, 75(7): 2046-2056. doi: 10.1128/AEM.02294-08
[20] CAO S, DU R, LI B, et al. High-throughput profiling of microbial community structures in an anammox-uasb reactor treating high-strength wastewater[J]. Applied Microbiology and Biotechnology, 2016, 100(14): 6457-6467. doi: 10.1007/s00253-016-7427-6
[21] JANSSEN P H. Identifying the dominant soil bacterial taxa in libraries of 16s rrna and 16s rrna genes[J]. Applied and Environmental Microbiology, 2006, 72(3): 1719-1728. doi: 10.1128/AEM.72.3.1719-1728.2006
[22] LIAO R, LI Y, YU X, et al. Performance and microbial diversity of an expanded granular sludge bed reactor for high sulfate and nitrate waste brine treatment[J]. Journal of Environmental Sciences, 2014, 26(4): 717-725. doi: 10.1016/S1001-0742(13)60479-9
[23] DU R, CAO S, LI B, et al. Performance and microbial community analysis of a novel deamox based on partial-denitrification and anammox treating ammonia and nitrate wastewaters[J]. Water Research, 2017, 108: 46-56. doi: 10.1016/j.watres.2016.10.051
[24] 吴兴海, 李咏梅. 碳氮比对不同滤料反硝化滤池脱氮效果的影响[J]. 环境工程学报, 2017, 11(1): 55-62. doi: 10.12030/j.cjee.201509116
[25] DI CAPUA F, MILONE I, LAKANIEMI A M, et al. Effects of different nickel species on autotrophic denitrification driven by thiosulfate in batch tests and a fluidized-bed reactor[J]. Bioresource Technology, 2017, 238: 534-541. doi: 10.1016/j.biortech.2017.04.082
[26] CHRISTIANSON L, LEPINE C, TSUKUDA S, et al. Nitrate removal effectiveness of fluidized sulfur-based autotrophic denitrification biofilters for recirculating aquaculture systems[J]. Aquacultural Engineering, 2015, 68: 10-18. doi: 10.1016/j.aquaeng.2015.07.002
[27] ZHU W, WANG C, HILL J, et al. A missing link in the estuarine nitrogen cycle?: Coupled nitrification-denitrification mediated by suspended particulate matter[J]. Scientific Reports, 2018: 8.
[28] HORN M A, IHSSEN J, MATTHIES C, et al. Dechloromonas denitrificans sp nov., flavobacterium dificans sp nov., paenibacillus anaericanus sp. Nov and paenibacillus terrae strain mh72, n2o-producenitring bacteria isolated from the gut of the earthworm aporrectodea caliginosa[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55: 1255-1265. doi: 10.1099/ijs.0.63484-0
[29] PARK M, RYUT H T S H, VU, et al. Flavobacterium defluvII sp nov., isolated from activated sludge[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57: 233-237. doi: 10.1099/ijs.0.64669-0