[1] |
RAJENDRAN R, VIGNESH S, SUGANTHI S, et al. g-C3N4/TiO2/CuO S-scheme heterostructure photocatalysts for enhancing organic pollutant degradation[J]. Journal of Physics and Chemistry of Solids, 2022, 161: 110391. doi: 10.1016/j.jpcs.2021.110391
|
[2] |
WU T F, HUANG J F, CHENG G, et al. Enhanced photocatalytic hydrogen evolution based on ternary noble-metal-free Co3O4/CdS/g-C3N4 composite[J]. Materials Letters, 2020, 292: 129274.
|
[3] |
杨婷婷, 陈星, 陈长斌, 等. CeO2/g-C3N4光催化-芬顿高效降解盐酸强力霉素[J]. 环境工程学报, 2021, 15(8): 2576-2587. doi: 10.12030/j.cjee.202103134
|
[4] |
WANG J, WANG G H, WANG X, et al. 3D/2D direct Z-scheme heterojunctions of hierarchical TiO2 microflowers/g-C3N4 nanosheets with enhanced charge carrier separation for photocatalytic H2 evolution[J]. Carbon, 2019, 149: 618-626. doi: 10.1016/j.carbon.2019.04.088
|
[5] |
李钱. 助催化剂修饰g-C3N4光催化还原CO2的性能优化与机理研究[D]. 杭州: 浙江大学, 2020.
|
[6] |
QIAN X B, PENG W, HUANG J H. Fluorescein-sensitized Au/g-C3N4 nanocomposite for enhanced photocatalytic hydrogen evolution under visible light[J]. Materials Research Bulletin, 2018, 102: 362-368. doi: 10.1016/j.materresbull.2018.02.056
|
[7] |
WANG H Q, SUN Z X, LI Q, et al. Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200–420 nm UV light[J]. Journal of CO2 Utilization. 2016, 14: 143-151.
|
[8] |
梁磊. 二氧化钛基光催化剂的制备及其降解性能研究[D]. 兰州: 兰州理工大学, 2021.
|
[9] |
ZHANG J J, KUANG M, WANG J, et al. Fabrication of carbon quantum dots/TiO2/Fe2O3 composites and enhancement of photocatalytic activity under visible light[J]. Chemical Physics Letters, 2019, 730: 391-398. doi: 10.1016/j.cplett.2019.06.011
|
[10] |
于子洋. 氧化锌和碳量子点基复合材料的制备及其气敏性能研究[D]. 长春: 吉林大学, 2020.
|
[11] |
WANG W, NI Y R, XU Z Z. One-step uniformly hybrid carbon quantum dots with high-reactive TiO2 for photocatalytic application[J]. Journal of Alloys and Compounds, 2015, 622: 303-308. doi: 10.1016/j.jallcom.2014.10.076
|
[12] |
HU Z Z, XIE X Y, LI S, et al. Rational construct CQDs/BiOCOOH/uCN photocatalyst with excellent photocatalytic performance for degradation of sulfathiazole[J]. Chemical Engineering Journal, 2021, 404: 126541. doi: 10.1016/j.cej.2020.126541
|
[13] |
JIAN X, LIU X, YANG H M, et al. Construction of carbon quantum dots/proton-functionalized graphitic carbon nitride nanocomposite via electrostatic self-assembly strategy and its application[J]. Applied Surface Science, 2016, 370: 514-521. doi: 10.1016/j.apsusc.2016.02.119
|
[14] |
吴茂. 多级氮化碳基催化剂的可控构筑及其光催化产氢性能研究[D]. 武汉: 中国地质大学, 2019.
|
[15] |
MI G K, WAN-KUEN J. Visible-light-activated N-doped CQDs/g-C3N4/Bi2WO6 nanocomposites with different component arrangements for the promoted degradation of hazardous vapors[J]. Journal of Materials Science & amp; Technology, 2020, 40(5): 168-175.
|
[16] |
HONG Y Z, MENG Y D, ZHANG G Y, et al. Facile fabrication of stable metal-free CQDs/g-C3N4 heterojunctions with efficiently enhanced visible-light photocatalytic activity[J]. Separation and Purification Technology, 2016, 171: 29-237.
|
[17] |
ZHOU J R, TIAN Y F, WU X, et al. Visible light photochemical vapor generation using metal-free g-C3N4/CQDs composites as catalyst: Selective and ultrasensitive detection of mercury by ICP-MS[J]. Microchemical Journal, 2017, 132: 319-326. doi: 10.1016/j.microc.2017.02.016
|
[18] |
TANG C Y, LIU C, HAN Y, et al. Nontoxic carbon quantum dots/g-C3N4 for efficient photocatalytic inactivation of staphylococcus aureus under visible light[J]. Advanced Healthcare Materials, 2019, 8(10): 1801534. doi: 10.1002/adhm.201801534
|
[19] |
周进, 丁玲, 张婷, 等. g-C3N4/CQDs光催化材料的制备及性能[J]. 精细化工, 2020, 37(4): 702-709.
|
[20] |
KADI M W, MOHAMED R M, BAHNEMANN D W. MgFe2O4 decoration of g-C3N4 nanosheets to enhance CIP oxidation in visible-light photocatalysis[J]. Optical Materials, 2021, 121: 111598. doi: 10.1016/j.optmat.2021.111598
|
[21] |
INGRAM D B, LINICC S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface[J]. Journal of the American Chemical Society, 2011, 133(14): 5202-5205. doi: 10.1021/ja200086g
|
[22] |
CUI E T, LU G X. New evidence for the regulation of photogenerated electron transfer on surface potential energy controlled co-catalyst on TiO2–The investigation of hydrogen production over selectively exposed Au facet on Au/TiO2[J]. International Journal of Hydrogen Energy, 2014, 39(15): 7672-7685. doi: 10.1016/j.ijhydene.2014.03.010
|
[23] |
郑凯. 改性氮化碳光催化材料的制备及其光催化性能研究[D]. 济南: 山东大学, 2021.
|
[24] |
WANG H, WU Y, FENG M, et al. Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam.[J]. Water Research, 2018, 144: 215-225. doi: 10.1016/j.watres.2018.07.025
|
[25] |
黄浩. Ultrathin g-C3N4/AgI异质结的原位构建及其光催化性能研究[D]. 大连: 大连理工大学, 2021.
|
[26] |
ZHANG J, YUAN X Z, JIANG L B, et al. Highly efficient photocatalysis toward tetracycline of nitrogen doped carbon quantum dots sensitized bismuth tungstate based on interfacial charge transfer[J]. Journal of Colloid & Interface Science, 2018, 511: 296-306.
|
[27] |
FENG S T, CHEN T, LIU Z C, et al. Z-scheme CdS/CQDs/g-C3N4 composites with visible-near-infrared light response for efficient photocatalytic organic pollutant degradation[J]. Science of the Total Environment, 2020, 704: 135404. doi: 10.1016/j.scitotenv.2019.135404
|
[28] |
陈鸿毅, 华涛, 李冬梅, 等. IL/GO/88A的制备及其对四环素的光催化降解性能[J]. 环境工程学报, 2021, 15(6): 1862-1872. doi: 10.12030/j.cjee.202101127
|