[1] 辛宝平, 王佳. 涉重危废概念的提出及其资源化利用[J]. 环境工程学报, 2022, 16(1): 1-9. doi: 10.12030/j.cjee.202111146
[2] 辛宝平, 王佳. 涉重危废三维属性及其精细化分级分类体系[J]. 环境工程学报, 2022, 16(2): 355-362. doi: 10.12030/j.cjee.202112159
[3] 联合国环境署. 巴塞尔公约(中文)[EB/OL] 0-08-17]. http://bcrc.tsinghua.edu.cn/atm/7/20200817215215207.pdf.
[4] 生态环境部, 国家发展和改革委员会, 公安部, 等. 国家危险废物名录(2021年版)[EB/OL]. [2020-11-25].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202011/t20201127_810202.html.
[5] GAUSTAD G, WILLIAMS E, LEADER A. Rare earth metals from secondary sources: Review of potential supply from waste and byproducts[J]. Resources, Conservation and Recycling, 2021, 167: 105213. doi: 10.1016/j.resconrec.2020.105213
[6] KRISHNAN S, ZULKAPLI N S, KAMYAB H, et al. Current technologies for recovery of metals from industrial wastes: An overview[J]. Environmental Technology and Innovation. 2021, 22: 105525.
[7] GU T Y, RASTEGAR S O, MOUSAVI S M, et al. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge (review)[J]. Bioresource Technology, 2018, 261: 428-440. doi: 10.1016/j.biortech.2018.04.033
[8] FUNARI V, BRAGA R, BOKHARI S, et al. Solid residues from Italian municipal solid waste incinerators: a source for “critical” raw materials[J]. Waste Management, 2015, 45: 206-216. doi: 10.1016/j.wasman.2014.11.005
[9] DING Y J, ZHANG S G, LIU B, et al. Recovery of precious metals from electronic waste and spent catalysts: A review[J]. Resources, Conservation and Recycling, 2019, 141: 284-298. doi: 10.1016/j.resconrec.2018.10.041
[10] HAO J J, WANG Y S, WU Y F, et al. Metal recovery from waste printed circuit boards: A review for current status and perspectives[J]. Resources, Conservation and Recycling, 2020, 157: 104787. doi: 10.1016/j.resconrec.2020.104787
[11] LI H, EKSTEEN J, ORABY E. Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives: A review[J]. Resources, Conservation and Recycling, 2018, 139: 122-139. doi: 10.1016/j.resconrec.2018.08.007
[12] ZENG X L, GONG R Y, CHEN W Q, et al. Uncovering the recycling potential of “new” WEEE in China[J]. Environmental Science and Technology, 2016, 50: 1347-1358. doi: 10.1021/acs.est.5b05446
[13] PATHAK A, KOTHARI R, VINOBA M, et al. Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions[J]. Journal of Environmental Management, 2021, 280: 111789. doi: 10.1016/j.jenvman.2020.111789
[14] 中华人民共和国全国人大常委会. 中华人民共和国固体废物污染环境防治法(2020年修订)[EB/OL]. [2020-04-29]. http://www.gov.cn/xinwen/2020-04/30/content_5507561.htm.
[15] 胡华龙, 郑洋, 郭瑞. 发达国家和地区危险废物名录管理实践[J]. 中国环境管理, 2016, 8(4): 76-81.
[16] NIU T Q, WANG J, CHU H C, et al. Deep removal of arsenic from regenerated products of spent V2O5-WO3/TiO2 SCR catalysts and its concurrent activation by bioleaching through a novel mechanism[J]. Chemical Engineering Journal, 2021, 65: 1103-1110.
[17] 王海北. 我国二次资源循环利用技术现状与发展趋势[J]. 有色金属(冶炼部分), 2019, 9: 1-11.
[18] DAHMUS J B, GUTOWSKI T G. What gets recycled: An information theory based model for product recycling[J]. Environmental Science and Technology. 2007, 41: 7543-7550.
[19] ANCTIL A, FTHENAKIS V. Critical metals in strategic photovoltaic technologies: abundance versus recyclability[J]. Progress in Photovoltaics. 2013, 21: 1253-1259.
[20] 生态环境部, 国家市场监督管理总局. 危险废物鉴别标准通则(GB 5085.7-2019)[EB/OL]. [2019-11-07].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/201911/t20191114_742433.html.
[21] MARTINEZ O V, BOOGAAR K G, LUNDSTROM M, et al. Statistical entropy analysis as tool for circular economy: Proof of concept by optimizing a lithium-ion battery waste sieving system[J]. Journal of Cleaner Production, 2019, 212: 1568-1579. doi: 10.1016/j.jclepro.2018.12.137