[1] 许瑞, 南小龙, 蒋国清, 等. 锑污染土壤微生物修复机制研究进展[J]. 矿产保护与利用, 2020, 40(4): 23-34.
[2] LI J, WANG Q, OREMLAND R S, et al. Microbial Antimony Biogeochemistry: Enzymes, Regulation, and Related Metabolic Pathways[J]. Applied and Environmental Microbiology, 2016, 82(18): 5482-5495. doi: 10.1128/AEM.01375-16
[3] CHU J W, MAO J S, HE M C. Anthropogenic antimony flow analysis and evaluation in China[J]. Science of the Total Environment, 2019, 683: 659-667. doi: 10.1016/j.scitotenv.2019.05.293
[4] WU F, FU Z, LIU B, et al. Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world's largest antimony mine area[J]. Science of the Total Environment, 2011, 409(18): 3344-51. doi: 10.1016/j.scitotenv.2011.05.033
[5] YAN L, CHAN T, JING C. Mechanistic study for stibnite oxidative dissolution and sequestration on pyrite[J]. Environmental Pollution, 2020, 262: 114309. doi: 10.1016/j.envpol.2020.114309
[6] TERRY L R, KULP T R, WIATROWSKI H, et al. Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments[J]. Applied and Environmental Microbiology, 2015, 81(24): 8478-8488. doi: 10.1128/AEM.01970-15
[7] WANG L Y, YE L, YU Y Q, et al. Antimony redox biotransformation in the subsurface: Effect of indigenous Sb(V) respiring microbiota[J]. Environmental Science and Technology, 2018, 52(3): 1200-1207. doi: 10.1021/acs.est.7b04624
[8] 程爱华, 郑蕾. 生物铁修复Cr(Ⅵ)污染土壤的性能及机理[J]. 环境工程学报, 2018, 12(10): 2892-2898. doi: 10.12030/j.cjee.201805032
[9] LI J, WANG Q, ZHANG S, et al. Phylogenetic and genome analyses of antimony-oxidizing bacteria isolated from antimony mined soil[J]. International Biodeterioration and Biodegradation, 2013, 76: 76-80. doi: 10.1016/j.ibiod.2012.06.009
[10] 徐一芃, 黄益宗, 张利田, 等. 镉砷污染土壤修复技术的文献计量分析[J]. 环境工程学报, 2020, 14(10): 2882-2894. doi: 10.12030/j.cjee.201910125
[11] MOON E M, PEACOCK C L. Adsorption of Cu(II) to ferrihydrite and ferrihydrite-bacteria composites: Importance of the carboxyl group for Cu mobility in natural environments[J]. Geochimica Et Cosmochimica Acta, 2012, 92: 203-219. doi: 10.1016/j.gca.2012.06.012
[12] YE L, MENG X G, JING C Y. Influence of sulfur on the mobility of arsenic and antimony during oxic-anoxic cycles: Differences and competition[J]. Geochimica Et Cosmochimica Acta, 2020, 288: 51-67. doi: 10.1016/j.gca.2020.08.007
[13] 生态环境部, 国家市场监督管理总局. 土壤环境质量建设用地土壤污染风险管控标准(试行) GB 36600-2018 [S]. 北京: 中国环境出版社, 2018.
[14] SHI Z, CAO Z, QIN D, et al. Correlation models between environmental factors and bacterial resistance to antimony and copper[J]. PLoS One, 2013, 8(10).
[15] 杜辉辉, 刘新, 陶洁, 等. 3种耐锑土壤细菌的筛选及对锑的吸附研究[J]. 环境科学学报, 2020, 40(6): 2205-2211.
[16] KEON N E, SWARTZ C H, BRABANDER D J, et al. Validation of an arsenic sequential extraction method for evaluating mobility in sediments[J]. Environmental Science and Technology, 2001, 35(16): 3396. doi: 10.1021/es0111028
[17] 胡春辉, 徐青, 孙璇, 等. 几种典型扫描电镜生物样本制备[J]. 湖北农业科学, 2016, 55(20): 5389-5392.
[18] LIU W, WANG H, DU J, et al. Raman microspectroscopy of nucleus and cytoplasm for human colon cancer diagnosis[J]. Biosens Bioelectron, 2017, 97: 70-74. doi: 10.1016/j.bios.2017.05.045
[19] VAN KHANH N, LEE J U. Antimony-Oxidizing Bacteria Isolated from Antimony-Contaminated Sediment - A Phylogenetic Study[J]. Geomicrobiology Journal, 2015, 32(1): 50-58. doi: 10.1080/01490451.2014.925009
[20] LEUZ A K, MONCH H, JOHNSON C A. Sorption of Sb(III) and Sb(V) to goethite: Influence on Sb(III) oxidation and mobilization[J]. Environmental Science and Technology, 2006, 40(23): 7277-7282. doi: 10.1021/es061284b
[21] ZHANG L, YE L, YIN Z, et al. Mechanistic study of antimonate reduction by Escherichia coli W3110[J]. Environmental Pollution, 2021: 118258.
[22] 张林, 卢金锁. Pantoea sp. IMH介导土壤中砷锑的形态转化[J]. 环境科学, 2017, 38(9): 3937-3943.
[23] 杨宾, 罗会龙, 刘士清, 等. 淹水对土壤重金属浸出行为的影响及机制[J]. 环境工程学报, 2019, 13(4): 936-943. doi: 10.12030/j.cjee.201811056
[24] BELZILE N, CHEN Y W, WANG Z J. Oxidation of antimony (III) by amorphous iron and manganese oxyhydroxides[J]. Chemical Geology, 2001, 174(4): 379-387. doi: 10.1016/S0009-2541(00)00287-4
[25] SUN Q, LIU C, ALVES M E, et al. The oxidation and sorption mechanism of Sb on delta-MnO2[J]. Chemical Engineering Journal, 2018, 342: 429-437. doi: 10.1016/j.cej.2018.02.091
[26] 徐伟, 刘锐平, 曲久辉, 等. 铁锰复合氧化物吸附去除五价锑性能研究[J]. 环境科学学报, 2012, 32(2): 270-275.
[27] DU H H, QU C C, LIU J, et al. Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species[J]. Environmental Pollution, 2017, 229: 871-878. doi: 10.1016/j.envpol.2017.07.052
[28] TARASSOV M, MIHAILOVA B, TARASSOVA E, et al. Chemical composition and vibrational spectra of tungsten-bearing goethite and hematite from Western Rhodopes, Bulgaria[J]. European Journal of Mineralogy, 2002, 14(5): 977-986. doi: 10.1127/0935-1221/2002/0014-0977
[29] NIEUWOUDT M K, COMINS J D, CUKROWSKI I. The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman micro-spectroscopy and electrochemical polarisation. Part I: near-resonance enhancement of the Raman spectra of iron oxide and oxyhydroxide compounds[J]. Journal of Raman Spectroscopy, 2011, 42(6): 1335-1339. doi: 10.1002/jrs.2837
[30] YANG X H, YAN B, LIU Y, et al. Gamma-FeOOH based hierarchically porous zeolite monoliths for As(V) removal: Characterisation, adsorption and response surface methodology[J]. Microporous and Mesoporous Materials, 2020: 308.
[31] FARIA M C S, ROSEMBERG R S, BOMFETI C A, et al. Arsenic removal from contaminated water by ultrafine delta-FeOOH adsorbents[J]. Chemical Engineering Journal, 2014, 237: 47-54. doi: 10.1016/j.cej.2013.10.006