[1] |
BRODA E. Two kinds of lithotrophs missing in nature[J/OL]. Zeitschrift für allgemeine Mikrobiologie, 1977, 17(6): 491–493 [2021–08–09]. https://onlinelibrary.wiley.com/doi/full/10.1002/jobm.19770170611.
|
[2] |
KUENEN J G. Anammox bacteria: From discovery to application [J/OL]. Nature Reviews Microbiology, 2008, 6(4): 320–326 [2019–02–22]. http://www.nature.com/articles/nrmicro1857.
|
[3] |
MULDER A, VAN DE GRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J/OL]. FEMS Microbiology Ecology, 1995, 16(3): 177–183[2021–08–09]. https://academic.oup.com/femsec/article/16/3/177/523781.
|
[4] |
VAN DE GRAAF A A, MULDER A, DE BRUIJN P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology, 1995, 61(4): 1246-1251. doi: 10.1128/AEM.61.4.1246-1251.1995
|
[5] |
STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J/OL]. Applied Microbiology and Biotechnology 1998 50: 5, 1998, 50(5): 589–596[2021–08–10]. https://link.springer.com/article/10.1007/s002530051340.
|
[6] |
STROUS M, FUERST J A, KRAMER E H M, et al. Missing lithotroph identified as new planctomycete[J/OL]. Nature, 1999, 400(6743): 446–449[2018–02–09]. http://www.nature.com/articles/22749.
|
[7] |
NI B J, CHEN Y P, LIU S Y, et al. Modeling a granule-based anaerobic ammonium oxidizing (ANAMMOX) process[J]. Biotechnology and Bioengineering, 2009, 103(3): 490-499. doi: 10.1002/bit.22279
|
[8] |
ZHANG Y, MA H, CHEN R, et al. Stoichiometric variation and loading capacity of a high-loading anammox attached film expanded bed (AAEEB) reactor[J]. Bioresource Technology, 2018, 253: 130-140. doi: 10.1016/j.biortech.2018.01.043
|
[9] |
LINDSAY M R, WEBB R I, STROUS M, et al. Cell compartmentalisation in planctomycetes: Novel types of structural organisation for the bacterial cell[J]. Archives of Microbiology, 2001, 175(6): 413-429. doi: 10.1007/s002030100280
|
[10] |
STROUS M, PELLETIER E, MANGENOT S, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J/OL]. Nature 2006 440: 7085, 2006, 440(7085): 790–794 [2021–08–10]. https://www.nature.com/articles/nature04647.
|
[11] |
ALMEIDA N M de, NEUMANN S, MESMAN R J, et al. Immunogold Localization of Key Metabolic Enzymes in the Anammoxosome and on the Tubule-Like Structures of Kuenenia stuttgartiensis[J/OL]. Journal of Bacteriology, 2015, 197(14): 2432–2441[2021–11–05]. https://journals.asm.org/doi/abs/10.1128/JB.00186-15.
|
[12] |
VAN DONGEN U, JETTEN M S M, VAN LOOSDRECHT M C M. The SHARON®-Anammox® process for treatment of ammonium rich wastewater[J]. Water Science and Technology, 2001, 44(1): 153-160. doi: 10.2166/WST.2001.0037
|
[13] |
TAL Y, WATTS J E M, SCHREIER S B, et al. Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in a closed recirculated mariculture system[J]. Aquaculture, 2003, 215(1-4): 187-202. doi: 10.1016/S0044-8486(02)00372-1
|
[14] |
FUJII T, SUGINO H, ROUSE J D, et al. Characterization of the microbial community in an anaerobic ammonium-oxidizing biofilm cultured on a nonwoven biomass carrier[J]. Journal of Bioscience and Bioengineering, 2002, 94(5): 412-418. doi: 10.1016/S1389-1723(02)80218-3
|
[15] |
LOTTI T, KLEEREBEZEM R, LUBELLO C, et al. Physiological and kinetic characterization of a suspended cell anammox culture[J]. Water Research, 2014, 60: 1-14. doi: 10.1016/j.watres.2014.04.017
|
[16] |
TANG C J, ZHENG P, WANG C H, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research, 2011, 45(1): 135-144. doi: 10.1016/j.watres.2010.08.018
|
[17] |
JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process: A review[Z/OL]. Elsevier, 2012: 67–79(2012–07–15)[2019–05–19]. https://www.sciencedirect.com/science/article/pii/S1385894712005864.
|
[18] |
KUAI L, VERSTRAETE W. Ammonium removal by the oxygen-limited autotrophic nitrification- denitrification system[J/OL]. Applied and Environmental Microbiology, 1998, 64(11): 4500–4506 [2021–11–05]. https://journals.asm.org/doi/abs/10.1128/AEM.64.11.4500-4506.1998.
|
[19] |
SLIEKERS A O, DERWORT N, GOMEZ J L C, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Water Research, 2002, 36(10): 2475-2482. doi: 10.1016/S0043-1354(01)00476-6
|
[20] |
LIEU P K, HATOZAKI R, HOMAN H, et al. Single-Stage Nitrogen Removal Using Anammox and Partial Nitritation (SNAP) for Treatment of Synthetic Landfill Leachate[J]. Japanese Journal of Water Treatment Biology, 2005, 41(2): 103-112. doi: 10.2521/JSWTB.41.103
|
[21] |
CHEN H, LIU S, YANG F, et al. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal[J]. Bioresource Technology, 2009, 100(4): 1548-1554. doi: 10.1016/j.biortech.2008.09.003
|
[22] |
HIPPEN A, ROSENWINKEL K H, BAUMGARTEN G, et al. Aerobic deammonification: A new experience in the treatment of waste waters[J]. Water Science and Technology, 1997, 35(10): 111-120. doi: 10.1016/S0273-1223(97)00211-4
|
[23] |
SIEGRIST H, REITHAAR S, LAIS P. Nitrogen loss in a nitrifying rotating contactor treating ammonium rich leachate without organic carbon[J]. Water Science and Technology, 1998, 37(4-5): 589-591. doi: 10.1016/S0273-1223(98)00164-4
|
[24] |
MULDER J W, VAN LOOSDRECHT M C M, HELLINGA C, et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering[J]. Water Science and Technology, 2001, 43(11): 127-134. doi: 10.2166/WST.2001.0675
|
[25] |
VAN DER STAR W R L, ABMA W R, BLOMMERS D, et al. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007, 41(18): 4149-4163. doi: 10.1016/j.watres.2007.03.044
|
[26] |
FIGDORE BRYCE, NEETHLING J B, STENSEL D. Deammonification [EB/OL](2019)[2022–01–03]. https://www.waterrf.org/sites/default/files/file/2021-07/Deammonification.pdf.
|
[27] |
WETT B. Solved upscaling problems for implementing deammonification of rejection water[J]. Water Science and Technology, 2006, 53(12): 121-128. doi: 10.2166/WST.2006.413
|
[28] |
WANG C C, LEE P H, KUMAR M, et al. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant[J/OL]. Journal of Hazardous Materials, 2010, 175(1–3): 622–628[2019–01–24]. https://www.sciencedirect.com/science/article/pii/S0304389409017038.
|
[29] |
DC Water to house world’s largest deammonification system for advanced nitrogen removal | WaterWorld [EB/OL][2021–11–06]. https://www.waterworld.com/technologies/article/16215013/dc-water-to-house-worlds-largest-deammonification-system-for-advanced-nitrogen-removal.
|
[30] |
LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences - An application survey[J]. Water Research, 2014, 55: 292-303. doi: 10.1016/j.watres.2014.02.032
|
[31] |
YESHI C, HONG K B, VAN LOOSDRECHT M C M, et al. Mainstream partial nitritation and anammox in a 200, 000 m3/day activated sludge process in Singapore: scale-down by using laboratory fed-batch reactor[J]. Water Science and Technology, 2016, 74(1): 48-56. doi: 10.2166/WST.2016.116
|
[32] |
LI J, PENG Y, ZHANG L, et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor[J/OL]. Water Research, 2019, 160: 178–187[2019–06–24].https://www.sciencedirect.com/science/article/pii/S0043135419304580. DOI:10.1016/j.watres.2019.05.070.
|
[33] |
RONG C, LUO Z, WANG T, et al. Chemical oxygen demand and nitrogen transformation in a large pilot-scale plant with a combined submerged anaerobic membrane bioreactor and one-stage partial nitritation-anammox for treating mainstream wastewater at 25 °C[J]. Bioresource Technology, 2021, 341: 125840. doi: 10.1016/j.biortech.2021.125840
|
[34] |
WU J, KONG Z, LUO Z, et al. A successful start-up of an anaerobic membrane bioreactor (AnMBR) coupled mainstream partial nitritation-anammox (PN/A) system: A pilot-scale study on in-situ NOB elimination, AnAOB growth kinetics, and mainstream treatment performance[J]. Water Research, 2021, 207: 117783. doi: 10.1016/J.WATRES.2021.117783
|
[35] |
GUO Y, LUO Z, RONG C, et al. The first pilot-scale demonstration of the partial nitritation/anammox-hydroxyapatite process to treat the effluent of the anaerobic membrane bioreactor fed with the actual municipal wastewater[J]. Science of The Total Environment, 2022, 807: 151063. doi: 10.1016/J.SCITOTENV.2021.151063
|
[36] |
SHI Y, HU S, LOU J, et al. Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor[J/OL]. Environmental Science and Technology, 2013, 47(20): 11577–11583[2021–11–16]. https://pubs.acs.org/doi/full/10.1021/es402775z.
|
[37] |
CAO S, WANG S, PENG Y, et al. Achieving partial denitrification with sludge fermentation liquid as carbon source: The effect of seeding sludge[J]. Bioresource Technology, 2013, 149: 570-574. doi: 10.1016/j.biortech.2013.09.072
|
[38] |
MA B, QIAN W, YUAN C, et al. Achieving Mainstream Nitrogen Removal through Coupling Anammox with Denitratation[J/OL]. Environmental Science and Technology, 2017, 51(15): 8405–8413 [2021–11–16]. https://pubs.acs.org/doi/full/10.1021/acs.est.7b01866.
|
[39] |
MA H, ZHANG Y, XUE Y, et al. A new process for simultaneous nitrogen removal and phosphorus recovery using an anammox expanded bed reactor[J/OL]. Bioresource Technology, 2018, 267: 201–208 [2018–07–25]. https://www.sciencedirect.com/science/article/pii/S0960852418309416#f0010.
|
[40] |
XUE Y, MA H, KONG Z, et al. Bulking and floatation of the anammox-HAP granule caused by low phosphate concentration in the anammox reactor of expanded granular sludge bed (EGSB)[J/OL]. Bioresource Technology, 2020, 310: 123421 [2020–05–01]. https://linkinghub.elsevier.com/retrieve/pii/S0960852420306933.
|
[41] |
MA H, XUE Y, ZHANG Y, et al. Simultaneous nitrogen removal and phosphorus recovery using an anammox expanded reactor operated at 25 °C[J/OL]. Water Research, 2020, 172: 115510[2020–02–18]. https://linkinghub.elsevier.com/retrieve/pii/S0043135420300464.
|
[42] |
GUO Y, LI Y Y. Hydroxyapatite crystallization-based phosphorus recovery coupling with the nitrogen removal through partial nitritation/anammox in a single reactor[J]. Water Research, 2020, 187: 116444. doi: 10.1016/j.watres.2020.116444
|
[43] |
SENGAR A, AZIZ A, FAROOQI I H, et al. Development of denitrifying phosphate accumulating and anammox micro-organisms in anaerobic hybrid reactor for removal of nutrients from low strength domestic sewage[J]. Bioresource Technology, 2018, 267: 149-157. doi: 10.1016/J.BIORTECH.2018.07.023
|
[44] |
ZHAO J, WANG X, LI X, et al. Advanced nutrient removal from ammonia and domestic wastewaters by a novel process based on simultaneous partial nitrification-anammox and modified denitrifying phosphorus removal[J]. Chemical Engineering Journal, 2018, 354: 589-598. doi: 10.1016/j.cej.2018.07.211
|