[1] |
ZHU G C, ZHENG H L, CHEN W Y, et al. Preparation of a composite coagulant: Polymeric aluminum ferric sulfate (PAFS) for wastewater treatment [J]. Desalination, 2012, 285: 315-323. doi: 10.1016/j.desal.2011.10.019
|
[2] |
BARRADO-MORENO M M, BELTRÁN-HEREDIA J, MARTÍN-GALLARDO J. Removal of Oocystis algae from freshwater by means of tannin-based coagulant [J]. Journal of Applied Phycology, 2016, 28(3): 1589-1595. doi: 10.1007/s10811-015-0718-y
|
[3] |
JANČULA D, MARŠÁLEK B. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms [J]. Chemosphere, 2011, 85(9): 1415-1422. doi: 10.1016/j.chemosphere.2011.08.036
|
[4] |
HUANG J, YANG Z H, ZENG G M, et al. Influence of composite flocculant of PAC and MBFGA1 on residual aluminum species distribution [J]. Chemical Engineering Journal, 2012, 191: 269-277. doi: 10.1016/j.cej.2012.03.015
|
[5] |
张文艺, 范培成, 李秋艳, 等. 聚合氯化铝-壳聚糖复合絮凝剂的合成及在蓝藻沼液预处理中的应用 [J]. 环境化学, 2012, 31(7): 1057-1062.
ZHANG W Y, FAN P C, LI Q Y, et al. Synthesis of PACl-CTS composite coagulant and application in the pre-treatment of blue algae biogas slurry [J]. Environmental Chemistry, 2012, 31(7): 1057-1062(in Chinese).
|
[6] |
YANG Z L, GAO B Y, YUE Q Y, et al. Effect of pH on the coagulation performance of Al-based coagulants and residual aluminum speciation during the treatment of humic acid-Kaolin synthetic water [J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 596-603.
|
[7] |
SUN F, PEI H Y, HU W R, et al. The lysis of Microcystis aeruginosa in AlCl3 coagulation and sedimentation processes [J]. Chemical Engineering Journal, 2012, 193-194: 196-202. doi: 10.1016/j.cej.2012.04.043
|
[8] |
周庆, 杨小杰, 韩士群. PAC改性粘土处理蓝藻水华对水环境的影响 [J]. 湖泊科学, 2017, 29(2): 343-350. doi: 10.18307/2017.0210
ZHOU Q, YANG X J, HAN S Q. Impacts of PAC modified clay applied in the control of cyanobacteria bloom and left in water on water environment [J]. Journal of Lake Sciences, 2017, 29(2): 343-350(in Chinese). doi: 10.18307/2017.0210
|
[9] |
杜晴, 宋荻, 唐宇农, 等. 淀粉改性絮凝剂与PAC复合絮凝发制品废水性能研究: 小试和中试 [J]. 环境化学, 2019, 38(9): 2081-2092. doi: 10.7524/j.issn.0254-6108.2018111101
DU Q, SONG D, TANG Y N, et al. Flocculation of hairwork wastewater using starch-based flocculants combined with PAC: Laboratory and pilot scale [J]. Environmental Chemistry, 2019, 38(9): 2081-2092(in Chinese). doi: 10.7524/j.issn.0254-6108.2018111101
|
[10] |
DU Q, WEI H, LI A M, et al. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater [J]. The Science of the Total Environment, 2017, 601/602: 1628-1637. doi: 10.1016/j.scitotenv.2017.06.029
|
[11] |
GLIBERT P M, BURKHOLDER J M. Harmful algal blooms and eutrophication: “strategies” for nutrient uptake and growth outside the Redfield comfort zone [J]. Chinese Journal of Oceanology and Limnology, 2011, 29(4): 724-738. doi: 10.1007/s00343-011-0502-z
|
[12] |
PAERL H W, XU H, MCCARTHY M J, et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy [J]. Water Research, 2011, 45(5): 1973-1983. doi: 10.1016/j.watres.2010.09.018
|
[13] |
秦伯强, 杨桂军, 马健荣, 等. 太湖蓝藻水华“暴发”的动态特征及其机制 [J]. 科学通报, 2016, 61(7): 759-770. doi: 10.1360/N972015-00400
QIN B Q, YANG G J, MA J R, et al. Dynamics of variability and mechanism of harmful cyanobacteria bloom in Lake Taihu, China [J]. Chinese Science Bulletin, 2016, 61(7): 759-770(in Chinese). doi: 10.1360/N972015-00400
|
[14] |
张龙, 乔俊莲, 雷青. 高锰酸钾预氧化强化混凝去除绿藻的研究 [J]. 环境科学学报, 2013, 33(1): 73-78.
ZHANG L, QIAO J L, LEI Q. The study of green algae removal by potassium permanganate pre-oxidation enhanced coagulation [J]. Acta Scientiae Circumstantiae, 2013, 33(1): 73-78(in Chinese).
|
[15] |
REN L X, WANG P F, WANG C, et al. Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments[J]. Environmental Pollution, 2017, 220(Pt A): 274-285.
|
[16] |
WANG L, LIANG W Y, YU J, et al. Flocculation of Microcystis aeruginosa using modified larch tannin [J]. Environmental Science & Technology, 2013, 47(11): 5771-5777.
|
[17] |
马亚锋, 王玉琪, 郑岚, 等. 阳离子淀粉絮凝剂合成及处理煤矿井废水性能研究 [J]. 工业用水与废水, 2013, 44(1): 58-62. doi: 10.3969/j.issn.1009-2455.2013.01.016
MA Y F, WANG Y Q, ZHENG L, et al. Synthesis of cationic starch flocculant and its performance when treating coal mine wastewater [J]. Industrial Water & Wastewater, 2013, 44(1): 58-62(in Chinese). doi: 10.3969/j.issn.1009-2455.2013.01.016
|
[18] |
KHALIL M I, FARAG S, HASHEM A. Preparation and characterization of some cationic starches [J]. Starch - Strke, 2010, 45(6): 226-231.
|
[19] |
YANG Z, KONG F X, SHI X L, et al. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (cyanobacteria) during flagellate grazing(1) [J]. Journal of Phycology, 2008, 44(3): 716-720. doi: 10.1111/j.1529-8817.2008.00502.x
|
[20] |
郭丽丽, 朱伟, 李明. 水中主要阳离子对铜绿微囊藻生长及多糖的影响 [J]. 生态环境学报, 2013, 22(8): 1358-1364. doi: 10.3969/j.issn.1674-5906.2013.08.014
GUO L L, ZHU W, LI M. Effect of major cations in water on the growth and polysaccharide contents of Microcystis aeruginosa [J]. Ecology and Environment Sciences, 2013, 22(8): 1358-1364(in Chinese). doi: 10.3969/j.issn.1674-5906.2013.08.014
|
[21] |
HOU J, YANG Z J, WANG P F, et al. Changes in Microcystis aeruginosa cell integrity and variation in microcystin-LR and proteins during Tanfloc flocculation and floc storage [J]. The Science of the Total Environment, 2018, 626: 264-273. doi: 10.1016/j.scitotenv.2018.01.074
|
[22] |
GAO L, PAN X L, ZHANG D Y, et al. Extracellular polymeric substances buffer against the biocidal effect of H2O2 on the bloom-forming cyanobacterium Microcystis aeruginosa [J]. Water Research, 2015, 69: 51-58. doi: 10.1016/j.watres.2014.10.060
|
[23] |
阮铃铃. 植物多酚抑藻效能与其作用下藻细胞生理特征的研究[D]. 北京: 北京林业大学, 2011.
RUAN L L. Study on the algal inhibition effect of plant polyphenols and algal cell physiological characteristics treated by them[D]. Beijing: Beijing Forestry University, 2011 (in Chinese).
|
[24] |
WANG X, WANG P F, WANG C, et al. Microcystin biosynthesis in Microcystis aeruginosa: Indirect regulation by iron variation [J]. Ecotoxicology & Environmental Safety, 2018, 148: 942-952.
|
[25] |
尤俊杰. PAC-改性淀粉复合絮凝剂的制备及性能研究[D]. 荆州: 长江大学, 2019.
YOU J J. Study on the preparation and flocculating performance of the PAC-modified starch composite coagulant[D]. Jingzhou: Yangtze University, 2019.
|
[26] |
吴挺峰, 秦伯强, 马健荣, 等. 浅水富营养化湖泊中蓝藻群体运动研究述评 [J]. 科学通报, 2019, 64(36): 3833-3843.
WU T F, QIN B Q, MA J R, et al. Movement of cyanobacterial colonies in a large, shallow and eutrophic lake: A review [J]. Chinese Science Bulletin, 2019, 64(36): 3833-3843(in Chinese).
|
[27] |
LI M, ZHU W, GAO L, et al. Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates [J]. Journal of Applied Phycology, 2013, 25(4): 1023-1030. doi: 10.1007/s10811-012-9937-7
|
[28] |
YANG Y Y, HOU J, WANG P F, et al. Influence of extracellular polymeric substances on cell-NPs heteroaggregation process and toxicity of cerium dioxide NPs to Microcystis aeruginosa [J]. Environmental Pollution, 2018, 242(Nov.Pt.B): 1206-1216.
|
[29] |
乔俊莲, 董磊, 徐冉, 等. 胞外分泌物对铜绿微囊藻混凝去除的影响 [J]. 同济大学学报(自然科学版), 2011, 39(6): 879-883. doi: 10.3969/j.issn.0253-374x.2011.06.017
QIAO J L, DONG L, XU R, et al. Effect of extracellular organic matter on Microcystis aeruginosa coagulation removal [J]. Journal of Tongji University (Natural Science), 2011, 39(6): 879-883(in Chinese). doi: 10.3969/j.issn.0253-374x.2011.06.017
|
[30] |
HENDERSON R K, PARSONS S A, JEFFERSON B. The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae [J]. Water Research, 2010, 44(12): 3617-3624. doi: 10.1016/j.watres.2010.04.016
|
[31] |
SHARP E L, PARSONS S A, JEFFERSON B. The impact of seasonal variations in DOC arising from a moorland peat catchment on coagulation with iron and aluminium salts [J]. Environmental Pollution, 2006, 140(3): 436-443. doi: 10.1016/j.envpol.2005.08.001
|
[32] |
周庆, 韩士群, 严少华. 聚合氯化铝与黏土的改性对富营养水体磷和蓝藻的同步去除 [J]. 环境化学, 2015, 34(11): 2059-2066. doi: 10.7524/j.issn.0254-6108.2015.11.2015041401
ZHOU Q, HAN S Q, YAN S H. Simultaneous removal of phosphorus and algae in eutrophic waters by modified complexes of aluminium polychlorid and clay [J]. Environmental Chemistry, 2015, 34(11): 2059-2066(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.11.2015041401
|
[33] |
PI K W, GAO L X, LI Z, et al. PAC with high content of Al13 polymer prepared by electrolysis with periodical reversal of electrodes [J]. Colloids & Surfaces:A Physicochemical & Engineering Aspects, 2011, 387(1-3): 113-117.
|
[34] |
张大为, 徐慧, 王希, 等. 藻形态及混凝剂组成对混凝-超滤过程的影响 [J]. 环境科学, 2017, 38(8): 3281-3289.
ZHANG D W, XU H, WANG X, et al. Effects of algal morphology and Al species distribution on the coagulation-ultrafiltration process [J]. Environmental Science, 2017, 38(8): 3281-3289(in Chinese).
|
[35] |
杨忠莲. 铝盐混凝剂在给水处理中残留铝含量、组分及影响机制研究[D]. 济南: 山东大学, 2013.
YANG Z L. Content, speciation and influencing mechanism of residual Al during drinking water treatment using Al-based coagulants[D]. Jinan: Shandong University, 2013(in Chinese).
|
[36] |
PANNARD A, PÉDRONO J, BORMANS M, et al. Production of exopolymers (EPS) by cyanobacteria: Impact on the carbon-to-nutrient ratio of the particulate organic matter [J]. Aquatic Ecology, 2016, 50(1): 29-44. doi: 10.1007/s10452-015-9550-3
|
[37] |
ZHANG X Z, AMENDOLA P, HEWSON J C, et al. Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation [J]. Bioresource Technology, 2012, 116: 477-484. doi: 10.1016/j.biortech.2012.04.002
|
[38] |
CHOW J S, LEE C, ENGEL A. The influence of extracellular polysaccharides, growth rate, and free coccoliths on the coagulation efficiency of Emiliania huxleyi [J]. Marine Chemistry, 2015, 175: 5-17. doi: 10.1016/j.marchem.2015.04.010
|
[39] |
曹西华, 宋秀贤, 俞志明. 改性黏土除藻的絮凝形态学特征初步研究 [J]. 海洋学报(中文版), 2017, 39(6): 33-42.
CAO X H, SONG X X, YU Z M. Morphological attributes of modified clays coagulated with red tide algae [J]. Acta Oceanologica Sinica, 2017, 39(6): 33-42(in Chinese).
|
[40] |
钱爱娟. 蓝藻胞外聚合物对混凝工艺的影响与调控研究[D]. 扬州: 扬州大学, 2018.
QIAN A J. Study on the effect and regulation of extracellular polymers of cyanobacteria on coagulation process[D]. Yangzhou: Yangzhou University, 2018(in Chinese).
|
[41] |
王林. PAC与硅藻土强化混凝处理水中铜绿微囊藻影响因素的研究[D]. 广州: 华南理工大学, 2014.
WANG L. Study on influencing factors of Microcystis aeruginosa removal in water by enhanced coagulation with PAC combining diatomite[D]. Guangzhou: South China University of Technology, 2014(in Chinese).
|
[42] |
WEI J C, GAO B Y, YUE Q Y, et al. Performance and mechanism of polyferric-quaternary ammonium salt composite flocculants in treating high organic matter and high alkalinity surface water [J]. Journal of Hazardous Materials, 2009, 165(1-3): 789-795. doi: 10.1016/j.jhazmat.2008.10.069
|
[43] |
DIVAKARAN R, PILLAI V N S. Flocculation of algae using chitosan [J]. Journal of Applied Phycology, 2002, 14(5): 419-422. doi: 10.1023/A:1022137023257
|
[44] |
VANDAMME D, FOUBERT I, MEESSCHAERT B, et al. Flocculation of microalgae using cationic starch [J]. Journal of Applied Phycology, 2010, 22(4): 525-530. doi: 10.1007/s10811-009-9488-8
|
[45] |
TAKAARA T, SANO D, KONNO H, et al. Cellular proteins of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride [J]. Water Research, 2007, 41(8): 1653-1658. doi: 10.1016/j.watres.2007.01.035
|
[46] |
方艳娟. 藻类对混凝过程影响机制的研究[D]. 重庆: 重庆大学, 2018.
FANG Y J. Study on the influence mechanism of algae on coagulation process[D]. Chongqing: Chongqing University, 2018(in Chinese).
|
[47] |
HENDERSON R K, PARSONS S A, JEFFERSON B. Successful removal of algae through the control of Zeta potential [J]. Separation Science and Technology, 2008, 43(7): 1653-1666. doi: 10.1080/01496390801973771
|
[48] |
AHMAD A L, YASIN N H M, DEREK C J C, et al. Optimization of microalgae coagulation process using chitosan [J]. Chemical Engineering Journal, 2011, 173(3): 879-882. doi: 10.1016/j.cej.2011.07.070
|