[1] 薛禹群, 张幼宽. 地下水污染防治在我国水体污染控制与治理中的双重意义[J]. 环境科学学报, 2009, 29(3): 474-481. doi: 10.3321/j.issn:0253-2468.2009.03.002
[2] 吕倩, 魏洁云. 中国地下水污染现状及治理[J]. 生态经济, 2016, 32(10): 4.
[3] NEWELL C J, ADAMSON D T, KULKARNI P R, et al. Comparing PFAS to other groundwater contaminants: Implications for remediation[J]. Remediation Journal, 2020, 30(3): 7-26. doi: 10.1002/rem.21645
[4] 丁嘉琰. 城市地下水污染现状及防治技术研究[J]. 资源节约与环保, 2020(11): 47-48. doi: 10.3969/j.issn.1673-2251.2020.11.029
[5] 姚德俊, 岳昌盛, 吕建国, 等. 我国工业场地污染地下水修复技术研究进展[J]. 现代化工, 2020, 40(12): 45-49.
[6] LI Z, SUN Y, YANG Y, et al. Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater[J]. Journal of Hazardous Materials, 2020, 383: 121240.1-121240.9.
[7] 2019年中国生态环境状况公报[EB/OL]. [2020-06-02]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202006/P020200602509464172096.pdf.
[8] 陈敏. 地下水污染修复技术综述[J]. 云南化工, 2020, 47(11): 12-14. doi: 10.3969/j.issn.1004-275X.2020.11.05
[9] 蒲生彦, 侯国庆, 吕雪, 等. 过氧化钙缓释技术在地下水污染修复中的应用研究[J]. 工业水处理, 2020, 40(8): 1-6.
[10] YONG S O, JORG R, DEYI H, et al. Soil and Groundwater Remediation Technologies: A Practical Guide[M]. CRC Press, 2020.
[11] 吴金红, 吴志鹏. 高压旋喷注射法在城市石油烃污染场地修复中的实践应用[J]. 绿色科技, 2018(12): 93-96.
[12] CHEN L W, HU X X, CAI T M. Degradation of triclosan in soils by thermally activated persulfate under conditions representative of in situ chemical oxidation (ISCO)[J]. Chemical Engineering Journal, 2019, 369: 344-352. doi: 10.1016/j.cej.2019.03.084
[13] UNGTAE K, JACK C P, ROBERT C B. Stochastic cost-optimization and risk assessment of in situ chemical oxidation for dense non-aqueous phase liquid (DNAPL) source remediation[J]. Stochastic Environmental Research and Risk Assessment, 2019, 33(1): 73-89. doi: 10.1007/s00477-018-1633-y
[14] 崔朋, 刘骁勇, 刘敏, 等. 原位化学氧化技术在苯酚类污染场地修复中的应用[J]. 山东化工, 2020, 49(9): 251-253.
[15] 宛召. 高压旋喷工艺在上海某污染场地修复中的应用研究[D]. 长春: 吉林大学, 2017.
[16] MANOJ P. R, DASOM O, CHUNG-SEOP L, et al. In situ chemical oxidation of contaminated groundwater using a sulfidized nanoscale zerovalent iron-persulfate system: Insights from a box-type study[J]. Chemosphere, 2020, 257: 127117. doi: 10.1016/j.chemosphere.2020.127117
[17] YANG X Y, CAI J S, WANG X N, et al. A bimetallic Fe-Mn oxide-activated oxone for in situ chemical oxidation ISCO of trichloroethylene in groundwater: Efficiency, sustained activity and mechanism investigation[J]. Environmental Science & Technology, 2020, 54(6): 3714-3724.
[18] 张超. 地下水中1, 2, 4-TCB污染的原位化学氧化修复技术实验研究[D]. 南京: 南京大学, 2018.
[19] FRIEDRICH J K. Critical analysis of the field-scale application of in situ chemical oxidation for the remediation of contaminated groundwater[D]. Colorado: Colorado School of Mines, 2008.
[20] LIU X X, YUAN S H, ZHANG P. Reduced nontronite-activated H2O2 for contaminants degradation: The beneficial role of clayed fractions in ISCO treatments[J]. Journal of Hazardous Materials, 2020, 386: 121945.
[21] ALANNAH T, NICK Z, STEPHEN P M. In-situ chemical oxidation of chlorendic acid by persulfate: Elucidation of the roles of adsorption and oxidation on chlorendic acid removal[J]. Water Research, 2019, 162: 78-86. doi: 10.1016/j.watres.2019.06.061
[22] YAN N, ZHONG H, BRUSSEAU M L. The natural activation ability of subsurface media to promote in-situ chemical oxidation of 1, 4-dioxane[J]. Water Research, 2019, 149: 386-393. doi: 10.1016/j.watres.2018.11.028
[23] 蒲生彦, 陈文英, 王宇, 等. 可控缓释技术在地下水原位修复中的应用研究进展[J]. 环境化学, 2020, 39(8): 2237-2244.
[24] PETER T P, ROBERTO A, FEDERICO P, et al. Sustained release of persulfate from inert inorganic materials for groundwater remediation[J]. Chemosphere, 2020, 259: 127508. doi: 10.1016/j.chemosphere.2020.127508
[25] NAIMA A K, KENNETH C C. Natural attenuation method for contaminant remediation reagent delivery assessment for in situ chemical oxidation using aqueous ozone[J]. Chemosphere, 2020, 247: 125848.
[26] 姜勇, 徐刚, 杨洁, 等. 高密度电法在原位修复土壤过程中的监控研究[J]. 环境监测管理与技术, 2020, 32(6): 18-22. doi: 10.3969/j.issn.1006-2009.2020.06.005
[27] ZENG H B, ZHAO X, ZHAO F P, et al. Oxidation of 2, 4-dichlorophenol in saline water by unactivated peroxymonosulfate: Mechanism, kinetics and implication for in situ chemical oxidation[J]. Science of the Total Environment, 2020, 728: 138826. doi: 10.1016/j.scitotenv.2020.138826
[28] MASOUD A, HARIHAR R. Transport with bimolecular reactions in a fracture‐matrix system: Analytical solutions with applications to in situ chemical oxidation[J]. Water Resources Research, 2019, 55(5): 3904-3924. doi: 10.1029/2019WR024762
[29] 陈素云, 王慧玲, 张靖婷, 等. 探讨原位化学氧化法氧化剂分散技术[J]. 环境与发展, 2018, 30(1): 113-114.
[30] 冯超, 王瑜, 王志乔, 等. 地下水原位修复材料钻进注入技术现状调研[C]//中国地质学会. 第二十届全国探矿工程(岩土钻掘工程)学术交流年会论文集. 中国地质学会: 中国地质学会探矿工程专业委员会, 2019: 9