[1] 宋震宇, 杨伟, 王文茜, 等. 氯代烃污染地下水修复技术研究进展[J]. 环境科学与管理, 2014, 39(4): 95-99. doi: 10.3969/j.issn.1673-1212.2014.04.024
[2] 谢辉. 某市东部地区地下水系统氯代烃迁移转化机理研究[D]. 济南: 济南大学, 2015.
[3] 李元杰, 王森杰, 张敏, 等. 土壤和地下水污染的监控自然衰减修复技术研究进展[J]. 中国环境科学, 2018, 38(30): 1185-1193.
[4] US EPA. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites[R/OL]. [2021-08-01]. U. S. Environmental Protection Agency, Washington, DC, EPA 20460. https://semspub.epa.gov/work/HQ/159152.pdf.
[5] 环境保护部. 污染场地修复技术目录(第一批). 环境保护部[Z]. 2004.
[6] CHEN Y, JIANG Y, ZHU Y, et al. Fate and transport of ethanol-blended dissolved BTEX hydrocarbons: A quantitative tracing study of a sand tank experiment[J]. Environmental Earth Sciences, 2012, 70: 49-56.
[7] CHIU H Y, VERPOORT F, LIU J K, et al. Using intrinsic bioremediation for petroleum-hydrocarbon contaminated groundwater cleanup and migration containment: Effectiveness and mechanism evaluation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72: 53-61. doi: 10.1016/j.jtice.2017.01.002
[8] HANG L, SU X, YAN W, et al. Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site[J]. Chemosphere, 2018, 206: 293-301. doi: 10.1016/j.chemosphere.2018.04.171
[9] 周睿, 赵勇胜, 任何军, 等. BTEX在地下环境中的自然衰减[J]. 环境科学, 2009, 30(9): 2804-2808.
[10] WITT M E, KLECKA G M, LUTZ E J, et al. Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: groundwater biogeochemistry[J]. Journal of Contaminant Hydrology, 2002, 57: 61-80. doi: 10.1016/S0169-7722(01)00218-2
[11] NIJENHUIS I, NIKOLAUSZ M, KOETH A, et al. Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/Wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers[J]. Chemosphere, 2007, 67(2): 300-311. doi: 10.1016/j.chemosphere.2006.09.084
[12] 郭琳. 上海某污染场地浅层地下水中氯代烃自然降解机制及能力研究[J]. 环境科技, 2013, 26(3): 9-13. doi: 10.3969/j.issn.1674-4829.2013.03.003
[13] 朱瑞利. 上海某污染场地地下水中三氯乙烷的自然衰减机制研究[D]. 上海: 华东理工大学, 2014.
[14] 朱瑞利, 张施阳, 李辉, 等. 上海浦东浅层地下水环境三氯乙烷自然衰减规律及过程模拟[J]. 华东理工大学学报 (自然科学版), 2015, 41(3): 342-348.
[15] 普发贵. Mann-Kendall检验法在抚仙湖水质趋势分析中的应用[J]. 环境科学导刊, 2014(6): 39-40. doi: 10.3969/j.issn.1673-9655.2014.02.009
[16] DEP. Use of monitored natural attenuation for groundwater remediation[EB/OL]. [2021-08-05]. Government of Western Australia, https://www.der.wa.gov.au/images/documents/your-environment/contaminated-sites/guidelines/use_of_ monitored_natural_attenuation_for_groundwater_remediation.pdf, 2004.
[17] 吴德礼, 马鲁铭, 王铮. 氯代有机物结构性质对还原脱氯速率的影响[J]. 工业用水与废水, 2005, 36(1): 22-25. doi: 10.3969/j.issn.1009-2455.2005.01.007
[18] EWELL C J, RIFAI H S, WILSON J T, et al. Ground water issue - calculation and use of first-order rate constants for monitored natural attenuation studies[EB/OL]. [2021-08-05]. U. S. Environmental Protection Agency, Washington, DC, EPA/540/S-02/500. https://archive.epa.gov/ada/web/pdf/10004674.pdf, 2002.
[19] WIEDEMEIER T H, SWANSON M A, MOUTOUX D E, et al. Technical protocol for evaluating natural attenuation of chlorinated solvents in ground water[EB/OL]. [2021-08-05]. U. S. Environmental Protection Agency, Washington, DC, EPA/600/R-98/128. https://semspub.epa.gov/work/06/668746.pdf, 1998.
[20] 郑昭贤, 苏小四, 王鼐, 等. 浅层地下水中氯代烷烃生物降解的地下水化学响应规律研究[J]. 地球学报, 2014, 35(2): 230-238. doi: 10.3975/cagsb.2014.02.16
[21] 何江涛, 史敬华, 崔卫华, 等. 浅层地下水氯代烃污染天然生物降解的判别依据[J]. 地球科学, 2004, 29(3): 357-362.
[22] 赵阳国. 生态因子对硫酸盐还原系统中微生物群落动态影响的表征[D]. 哈尔滨: 哈尔滨工业大学, 2006.
[23] ZHANG X, LUO M, DENG S, et al. Field study of microbial community structure and dechlorination activity in a multi-solvents co-contaminated site undergoing natural attenuation[J]. Journal of Hazardous Materials, 2020, 423: 127010.
[24] DOESBURG W, VAN EEKERT M, MIDDELDROP P, et al. Reductive dechlorination of β-hexachlorocyclohexane (β-HCH) by a Dehalobacter species in coculture with a Sedimentibacter sp.[J]. FEMS Microbiology Ecology, 2005(1): 87-95.
[25] 刘帅. 氯代烷烃在垃圾填埋场覆盖层中的迁移转化及降解机制研究[D]. 重庆: 重庆理工大学, 2019.