[1] |
YOUNAS M, SOHAIL M, LEONG L K, et al. Feasibility of CO2 adsorption by solid adsorbents: A review on low-temperature systems[J]. International Journal of Environmental Science and Technology, 2016, 13(7): 1839-1860. doi: 10.1007/s13762-016-1008-1
|
[2] |
李洪言, 赵朔, 刘飞, 等. 2040年世界能源供需展望: 基于《BP世界能源展望(2019年版)》[J]. 天然气与石油, 2019, 37(6): 1-8. doi: 10.3969/j.issn.1006-5539.2019.06.001
|
[3] |
ZHENG L, CHENG S, HAN Y, et al. Bio-natural gas industry in China: Current status and development[J]. Renewable & Sustainable Energy Reviews, 2020, 128: 109925.
|
[4] |
武传涛, 韩严和, 符一鸣. 内循环微电解对天然气中H2S的处理及其工艺的优化[J]. 环境工程学报, 2020, 14(3): 721-729. doi: 10.12030/j.cjee.201905175
|
[5] |
蔡靖, 王凯权, 孙月, 等. 生物强化自发电化学氧化含硫废水及关键功能微生物研究[J]. 环境科学学报, 2021, 41(5): 1840-1846.
|
[6] |
HAMELERS H V M, HEIJNE T A, SLEUTELS T H J A, et al. New applications and performance of bioelectrochemical systems[J]. Applied Microbiology and Biotechnology, 2010, 85(6): 1673-1685. doi: 10.1007/s00253-009-2357-1
|
[7] |
李莉, 代勤, 张赛, 等. 不同pH下微生物燃料电池降解含硫偶氮染料废水的效能及其机理[J]. 环境工程学报, 2021, 15(1): 115-125. doi: 10.12030/j.cjee.202004125
|
[8] |
GUO Y L, WEI X, ZHANG S H. Simultaneous removal of organics, sulfide and ammonium coupled with electricity generation in a loop microbial fuel cell system[J]. Bioresource Technology, 2020, 305: 123082. doi: 10.1016/j.biortech.2020.123082
|
[9] |
CAI J, QAISAR M, SUN Y, et al. Coupled substrate removal and electricity generation in microbial fuel cells simultaneously treating sulfide and nitrate at various influent sulfide to nitrate ratios[J]. Bioresource Technology, 2020, 306: 123174. doi: 10.1016/j.biortech.2020.123174
|
[10] |
NI G, HARNAWAN P, SEIDEL L, et al. Haloalkaliphilic microorganisms assist sulfide removal in a microbial electrolysis cell[J]. Journal of Hazardous Materials, 2019, 363: 197-204. doi: 10.1016/j.jhazmat.2018.09.049
|
[11] |
ZEPPILLI M, VILLANO M, MAJONE M. Microbial electrolysis cell to enhance energy recovery from wastewater treatment[J]. Chemical Engineering Transactions, 2015, 43: 2341-2346.
|
[12] |
ZHANG S H, BAO R, LU J, et al. Simultaneous sulfide removal, nitrification, denitrification and electricity generation in three-chamber microbial fuel cells[J]. Separation and Purification Technology, 2018, 195: 314-321. doi: 10.1016/j.seppur.2017.12.027
|
[13] |
FU X, LI J, PAN X, et al. A single microbial electrochemical system for CO2 reduction and simultaneous biogas purification, upgrading and sulfur recovery[J]. Bioresource Technology, 2020, 297: 122448. doi: 10.1016/j.biortech.2019.122448
|
[14] |
AHN Y, LOGAN B E. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design[J]. Applied Microbiology and Biotechnology, 2012, 93(5): 2241-2248. doi: 10.1007/s00253-012-3916-4
|
[15] |
DAI Q, ZHANG S, LIU H, et al. Sulfide-mediated azo dye degradation and microbial community analysis in a single-chamber air cathode microbial fuel cell[J]. Bioelectrochemistry, 2020, 131: 107349. doi: 10.1016/j.bioelechem.2019.107349
|
[16] |
DYKSTRA C M, PAVLOSTATHIS S G. Hydrogen sulfide affects the performance of a methanogenic bioelectrochemical system for biogas upgrading[J]. Water Research, 2021, 200: 117268.
|
[17] |
WANG B, LIU W, ZHANG Y, et al. Bioenergy recovery from wastewater accelerated by solar power: Intermittent electro-driving regulation and capacitive storage in biomass[J]. Water Research, 2020, 175: 115696. doi: 10.1016/j.watres.2020.115696
|
[18] |
YU J, HUANG Z, WU P, et al. Performance and microbial characterization of two-stage caproate fermentation from fruit and vegetable waste via anaerobic microbial consortia[J]. Bioresource Technology, 2019, 284: 398-405. doi: 10.1016/j.biortech.2019.03.124
|
[19] |
EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998. doi: 10.1038/nmeth.2604
|
[20] |
WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267. doi: 10.1128/AEM.00062-07
|
[21] |
孙敏. 微生物燃料电池的功能拓展和机理解析[D]. 合肥: 中国科学技术大学, 2009.
|
[22] |
SUN M, ZHAI L F, MU Y, et al. Bioelectrochemical element conversion reactions towards generation of energy and value-added chemicals[J]. Progress in Energy and Combustion Science, 2020, 77: 100814. doi: 10.1016/j.pecs.2019.100814
|
[23] |
IKUMAPAY F, MAKITATO M, JOHANSSON B, et al. Recycling of process water in sulphide flotation: Effect of calcium and sulphate ions on flotation of galena[J]. Minerals Engineering, 2012, 39: 77-88. doi: 10.1016/j.mineng.2012.07.016
|
[24] |
SUN M, MU Z X, CHEN Y P, et al. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell[J]. Environmental Science & Technology, 2009, 43(9): 3372-3377.
|
[25] |
ZHEN G, LU X, KUMAR G, et al. Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: Current situation, challenges and future perspectives[J]. Progress in Energy and Combustion Science, 2017, 63: 119-145. doi: 10.1016/j.pecs.2017.07.003
|
[26] |
YANG H, BAO B, LIU J, et al. Temperature dependence of bioelectrochemical CO2 conversion and methane production with a mixed-culture biocathode[J]. Bioelectrochemistry, 2018, 119: 180-188. doi: 10.1016/j.bioelechem.2017.10.002
|
[27] |
PANG Y, GU T, ZHANG G, et al. Experimental study on volatile sulfur compound inhibition using a single-chamber membrane-free microbial electrolysis cell[J]. Environmental Science and Pollution Research International, 2020, 27(24): 30571-30582. doi: 10.1007/s11356-020-09325-8
|
[28] |
LOGAN B E, ROSSI R, RAGAB A, et al. Electroactive microorganisms in bioelectrochemical systems[J]. Nature Reviews Microbiology, 2019, 17(5): 307-319. doi: 10.1038/s41579-019-0173-x
|
[29] |
DENG H, CHEN Z, ZHAO F. Energy from plants and microorganisms: Progress in plant-microbial fuel cells[J]. ChemSusChem, 2012, 5(6): 1006-1011. doi: 10.1002/cssc.201100257
|