[1] 邹高龙, 刘志文, 董洁平, 等. 环丙沙星在污水处理过程中的迁移转化及对污水生物处理的影响[J]. 环境科学学报, 2019, 39(2): 308-317.
[2] 蒋煜峰, 温红, 张前, 等. 环丙沙星在黄土中的吸附机制及影响因素[J]. 中国环境科学, 2019, 39(10): 4262-4269. doi: 10.3969/j.issn.1000-6923.2019.10.028
[3] MOVASAGHI Z, YAN B, NIU C. Adsorption of ciprofloxacin from water by pretreated oat hulls: Equilibrium, kinetic, and thermodynamic studies[J]. Industrial Crops and Products, 2019, 127(1/2/3): 237-250.
[4] 张婷婷, 韩秀丽, 刘 莹, 等. 生物质基活性炭对环丙沙星的吸附性能研究[J]. 林产化学与工业, 2020, 40(4): 71-78. doi: 10.3969/j.issn.0253-2417.2020.04.010
[5] YANG Z M, SHI X S, DAI M, et al. Co-metabolic removal of ciprofloxacin under condition of interaction between microbes and Fe3O4[J]. Chemical Engineering Journal, 2018, 333: 649-656. doi: 10.1016/j.cej.2017.09.177
[6] JIA Y Y, KHANAL S K, SHU H Y, et al. Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: mechanism and pathways[J]. Water Research, 2018, 136(1): 64-74.
[7] 钟雪晴, 朱雅莉, 王玉娇, 等. 含抗生素废水的微藻处理技术及其进展[J]. 化工进展, 2021, 40(4): 2308-2317.
[8] 史京转, 魏红, 周孝德, 等. CoFe2O4增强超声/H2O2降解环丙沙星[J]. 环境化学, 2018, 37(10): 2237-2246. doi: 10.7524/j.issn.0254-6108.2018030401
[9] 秦航道, 肖榕, 吴思展, 等. MnFe2O4磁性纳米棒非均相Fenton催化降解水中四环素的研究[J]. 环境科学学报, 2020, 40(11): 3913-3921.
[10] 李永琦, 张弓, 肖峰, 等. 天然矿石催化非均相芬顿反应降解苯酚[J]. 环境工程学报, 2021, 15(7): 2265-2273. doi: 10.12030/j.cjee.202102024
[11] PAN Y, JIANG S S, XIONG W, et al. Supported CuO catalysts on metal-organic framework (Cu-UiO-66) for efficient catalytic wet peroxide oxidation of 4-chlorophenol in wastewater[J]. Microporous and Mesoporous Materials, 2020, 291: 109703. doi: 10.1016/j.micromeso.2019.109703
[12] JIANG S S, ZHANG H P, YAN Z Y. Cu-MFI zeolite supported on paper-like sintered stainless fiber for catalytic wet peroxide oxidation of phenol in a batch reactor[J]. Separation and Purification Technology, 2018, 190: 243-251. doi: 10.1016/j.seppur.2017.09.001
[13] 徐丹, 张丽丽, 柳丽芬. Cu-Al2O3中骨架铜类芬顿催化去除水中有机污染物[J]. 环境科学, 2017, 38(3): 1054-1060.
[14] WANG S X, TIAN J Y, WANG Q, et al. Development of CuO coated ceramic hollow fiber membrane for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for bisphenol a degradation[J]. Applied Catalysis B:Environmental, 2019, 256: 117783. doi: 10.1016/j.apcatb.2019.117783
[15] XIANG W, ZHOU T, WANG Y F. Catalytic oxidation of diclofenac by hydroxylamine-enhanced Cu nanoparticles and the efficient neutral heterogeneous-homogeneous reactive copper cycle[J]. Water Research, 2019, 153: 274-283. doi: 10.1016/j.watres.2019.01.024
[16] ZHANG N Q, XUE C J, WANG K, et al. Efficient oxidative degradation of fluconazole by a heterogeneous Fenton process with Cu-V bimetallic catalysts[J]. Chemical Engineering Journal, 2020, 380: 122516. doi: 10.1016/j.cej.2019.122516
[17] ZHANG N Q, YI Y Q, LIAN J T, et al. Effects of Ce doping on the Fenton-like reactivity of Cu-based catalyst to the fluconazole[J]. Chemical Engineering Journal, 2020, 395: 124897. doi: 10.1016/j.cej.2020.124897
[18] HUANG Z P, CHEN Z P, CHEN Y C, et al. Synergistic effects in iron-copper bimetal doped mesoporous gamma-Al2O3 for Fenton-like oxidation of 4-chlorophenol: Structure, composition, electrochemical behaviors and catalytic performance[J]. Chemosphere, 2018, 203: 442-449. doi: 10.1016/j.chemosphere.2018.04.001
[19] LYU L, ZHANG L L, WANG Q Y, et al. Enhanced fenton catalytic efficiency of γ-Cu-Al2O3 by σ-Cu2+-ligand complexes from aromatic pollutant degradation[J]. Environmental Science & Technology, 2015, 49(14): 8639-8647.
[20] SUN Y, TIAN P F, DING D D, et al. Revealing the active species of Cu-based catalysts for heterogeneous Fenton reaction[J]. Applied Catalysis B:Environmental, 2019, 258: 117985. doi: 10.1016/j.apcatb.2019.117985
[21] 刘小为, 陈忠林, 沈吉敏, 等. 硫酸钛光度法测定O3/H2O2体系中低浓度H2O2[J]. 中国给水排水, 2010, 26(16): 126-129.
[22] 陈闪闪. 新型钴铜复合非均相类Fenton催化剂的制备及其性能研究[D]. 镇江: 江苏大学, 2016.
[23] FU L J, LI X Y, LIU M Z, et al. Insights into the nature of Cu doping in amorphous mesoporous alumina[J]. Journal of Materials Chemistry A, 2013, 1(46): 14592-14605. doi: 10.1039/c3ta13273k
[24] 李赛赛, 王军凯, 段红娟, 等. 水热碳化制备碳微球及其在Al2O3-SiC-C浇注料中的应用[J]. 硅酸盐学报, 2018, 46(3): 341-346.
[25] 李牧, 姜奉华, 薛菲, 等. 纳米V2O5及其复合电极材料的电化学性能[J]. 硅酸盐学报, 2019, 47(6): 735-741.
[26] LÓPEZ-SUÁREZ F E, PARRES-ESCLAPEZ S, BUENO-LÓPEZ A, et al. Role of surface and lattice copper species in copper-containing (Mg/Sr) TiO3 perovskite catalysts for soot combustion[J]. Applied Catalysis B:Environmental, 2009, 93(1/2): 82-89.
[27] 惠劭华, 李一兵, 王雁, 等. 介孔Cu-Al2O3纳米纤维类芬顿氧化降解双酚A[J]. 环境化学, 2020, 39(10): 2858-2868. doi: 10.7524/j.issn.0254-6108.2019071703
[28] 陆磊. 催化湿式过氧化氢氧化法处理酸性大红-3R模拟废水的研究[D]. 杨凌: 西北农林科技大学, 2010.
[29] 杨岳主, 李玉平, 杨道武, 等. 铁铜催化剂非均相Fenton降解苯酚及机制研究[J]. 环境科学, 2013, 34(7): 2658-2664.
[30] HU E L, WU X B, SHANG S M, et al. Catalytic ozonation of simulated texile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst[J]. Journal of Cleaner Production, 2016, 112: 4710-4718. doi: 10.1016/j.jclepro.2015.06.127
[31] 刘嘉媚, 罗琨, 肖晴月, 等. 生物炭负载铁锰氧化物对环丙沙星的去除研究[J]. 环境科学与技术, 2019, 42(12): 61-67.
[32] GUO X X, HU T T, MENG B, et al. Catalytic degradation of anthraquinones-containing H2O2 production effluent over layered Co-Cu hydroxides: Defects facilitating hydroxyl radicals generation[J]. Applied Catalysis B:Environmental, 2020, 260: 118157. doi: 10.1016/j.apcatb.2019.118157
[33] ZHANG H J, LI G C, DENG L, et al. Heterogeneous activation of hydrogen peroxide by cysteine intercalated layered double hydroxide for degradation of organic pollutants: Performance and mechanism[J]. Journal of Colloid and Interface Science, 2019, 543: 183-191. doi: 10.1016/j.jcis.2019.02.059
[34] 杜晓晴, 马秀兰, 张婧, 等. 改性Ge/TiO2催化剂降解环丙沙星的研究[J]. 中国抗生素杂志, 2019, 44(8): 993-999. doi: 10.3969/j.issn.1001-8689.2019.08.019
[35] SHEN K, CUI Y, ZHANG D, et al. Biomimetic preparation of MoS2-Fe3O4 MNPs as heterogeneous catalysts for the degradation of methylene blue[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104125. doi: 10.1016/j.jece.2020.104125
[36] JIANG S S, ZHANG H P, YAN Y, et al. Preparation and characterization of porous Fe-Cu mixed oxides modified ZSM-5 coating/PSSF for continuous degradation of phenol wastewater[J]. Microporous and Mesoporous Materials, 2017, 240: 108-116. doi: 10.1016/j.micromeso.2016.11.020