[1] WANG J, ZHAO H, HALLER G, et al. Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts[J]. Applied Catalysis B:Environmental, 2017, 202(3): 46-54.
[2] PARK J H, AHN J W, KIM K H, et al. Historic and futuristic review of electron beam technology for the treatment of SO2 and NOx in flue gas[J]. Chemical Engineering Journal, 2019, 355(3): 51-66.
[3] BRANDIN J G M, ODENBRAND C U I. Poisoning of SCR catalysts used in municipal waste incineration applications[J]. Topics in Catalysis, 2017, 60(17/18): 1306-1316.
[4] VAN CANEGHEM J, DE GREEF J, BLOCK C, et al. NOx reduction in waste incinerators by selective catalytic reduction (SCR) instead of selective non catalytic reduction (SNCR) compared from a life cycle perspective: A case study[J]. Journal of Cleaner Production, 2016, 112(44): 52-60.
[5] HAO J, YU W, LU P, et al. The effects of Na/K additives and flyash on NO reduction in a SNCR process[J]. Chemosphere, 2015, 122(21): 3-8.
[6] FAN W, ZHU T, SUN Y, et al. Effects of gas compositions on NOx reduction by selective non-catalytic reduction with ammonia in a simulated cement precalciner atmosphere[J]. Chemosphere, 2014, 113(18): 2-7.
[7] 戴晓云. SNCR系统对垃圾焚烧厂NOx排放浓度影响研究[J]. 节能与环保, 2020(6): 82-84.
[8] 朱传强, 胡利华, 沈宏伟, 等. 生活垃圾焚烧选择性非催化还原(SNCR)的工程试验研究[J]. 工程热物理学报, 2020, 41(8): 2089-2095.
[9] 张彦文, 蔡宁生. 加入甲烷促进选择性非催化还原反应的实验研究[J]. 中国电机工程学报, 2007, 27(35): 7-11. doi: 10.3321/j.issn:0258-8013.2007.35.002
[10] 张彦文, 蔡宁生. 加入甲烷促进选择性非催化还原反应的机理验证和分析[J]. 中国电机工程学报, 2008, 28(2): 49-54. doi: 10.3321/j.issn:0258-8013.2008.02.009
[11] ROTA R, ZANOELO E F. Influence of oxygenated additives on the NOxOUT process efficiency[J]. Fuel, 2003, 82(7): 765-70. doi: 10.1016/S0016-2361(02)00365-4
[12] JAVED M T, NIMMO W, MAHMOOD A, et al. Effect of oxygenated liquid additives on the urea based SNCR process[J]. Journal of Environmental Management, 2009, 90(11): 3429-3435. doi: 10.1016/j.jenvman.2009.05.021
[13] LI J, QI Z, LI M, et al. Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant[J]. Energy & Fuels, 2017, 31(2): 1778-1785.
[14] NIU Y, TAN H, HUI S E. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Progress in Energy and Combustion Science, 2016, 52: 1-61. doi: 10.1016/j.pecs.2015.09.003
[15] BAE S W, ROH S A, KIM S D. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process[J]. Chemosphere, 2006, 65(1): 170-175. doi: 10.1016/j.chemosphere.2006.02.040
[16] 张波. 生物油对尿素SNCR过程影响的实验研究 [D]. 武汉: 华中科技大学, 2013.
[17] ZHANG X, CHE Q F, CUI X, et al. Application of biomass pyrolytic polygeneration by a moving bed: Characteristics of products and energy efficiency analysis[J]. Bioresource Technology, 2018, 254: 130-138. doi: 10.1016/j.biortech.2018.01.083
[18] YANG W, ZHOU J, ZHOU Z, et al. Action of oxygen and sodium carbonate in the urea-SNCR process[J]. Combustion and Flame, 2009, 156(9): 1785-1790. doi: 10.1016/j.combustflame.2009.06.008
[19] 陈镇超. 基于尿素还原剂的选择性非催化还原高效脱硝技术的实验研究 [D]. 杭州: 浙江大学, 2012.
[20] MILLER J A, GLARBORG P. Modeling the thermal De-NOx process: Closing in on a final solution[J]. International Journal of Chemical Kinetics, 1999, 31(11): 757-765. doi: 10.1002/(SICI)1097-4601(1999)31:11<757::AID-JCK1>3.0.CO;2-V
[21] MILLER J A, BOWMAN C T. Mechanism and modeling of nitrogen chemistry in combustion[J]. Progress in Energy and Combustion Science, 1989, 15(4): 287-338. doi: 10.1016/0360-1285(89)90017-8
[22] 陈旭. 生物质富钙热解过程中生物油脱氧机理及调控机制研究[D]. 武汉: 华中科技大学, 2018.
[23] ZHANG Y, CAI N, YANG J, et al. Experimental and modeling study of the effect of CH4 and pulverized coal on selective non-catalytic reduction process[J]. Chemosphere, 2008, 73(5): 650-656. doi: 10.1016/j.chemosphere.2008.07.032
[24] 胥波, 张彦文, 蔡宁生. 加入CH4促进选择性非催化还原的CFD模拟研究[J]. 中国电机工程学报, 2009, 29(5): 37-41. doi: 10.3321/j.issn:0258-8013.2009.05.008
[25] 熊建国, 吕洪坤, 韩高岩, 等. CH4对于尿素选择性非催化还原脱硝的影响研究[J]. 环境污染与防治, 2018, 40(2): 161-164.
[26] LU Z M, LU J D. Influences of O2 concentration on NO reduction and N2O formation in thermal deNOx process[J]. Combustion and Flame, 2009, 156(6): 1303-1315. doi: 10.1016/j.combustflame.2009.01.021
[27] KASUYA F, GLARBORG P, JOHNSSON J E, et al. The thermal DeNOx process: Influence of partial pressures and temperature[J]. Chemical Engineering Science, 1995, 50(9): 1455-1466. doi: 10.1016/0009-2509(95)00008-S
[28] LI G, WU Q, WANG S, et al. The influence of flue gas components and activated carbon injection on mercury capture of municipal solid waste incineration in China[J]. Chemical Engineering Journal, 2017, 326(56): 1-9.
[29] 张谋, 陈汉平, 王贤华, 等. 富钙生物油煅烧分解特性研究[C]//中国可再生能源协会. 2008年生物质能源技术国际会议论文集. 中国广州, 2008.
[30] 梁秀进, 仲兆平, 金保升, 等. CH4作添加剂对SNCR脱硝工艺的影响[J]. 东南大学学报(自然科学版), 2009, 39(3): 629-634. doi: 10.3969/j.issn.1001-0505.2009.03.039
[31] YAO T, DUAN Y, YANG Z, et al. Experimental characterization of enhanced SNCR process with carbonaceous gas additives[J]. Chemosphere, 2017, 177(1): 49-56.
[32] JAVED M T, NIMMO W, GIBBS B M. Experimental and modeling study of the effect of CO and H2 on the urea DeNOx process in a 150 kW laboratory reactor[J]. Chemosphere, 2008, 70(6): 1059-1067. doi: 10.1016/j.chemosphere.2007.07.065