[1] ZHANG X Y, GAO B, CREAMER A E, et al. Adsorption of VOCs onto engineered carbon materials: A review[J]. Journal of Hazardous Materials, 2017, 338: 102-123. doi: 10.1016/j.jhazmat.2017.05.013
[2] YANG Y, JI D S, SUN J, et al. Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment[J]. Science of the Total Environment, 2019, 695: 133889. doi: 10.1016/j.scitotenv.2019.133889
[3] QIU K Q, YANG L X, LIN J M, et al. Historical industrial emissions of non-methane volatile organic compounds in China for the period of 1980-2010[J]. Atmospheric Environment, 2014, 86: 102-112. doi: 10.1016/j.atmosenv.2013.12.026
[4] 梁小明, 孙西勃, 徐建铁, 等. 中国工业源挥发性有机物排放清单[J]. 环境科学, 2020, 41(11): 4767-4775.
[5] ZHANG X M, XUE Z G, LI H, et al. Ambient volatile organic compounds pollution in China[J]. Journal of Environmental Science, 2017, 55(5): 69-75.
[6] BARI M A, KINDZIERSKI W B. Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment[J]. Science of the Total Environment, 2018, 631-632: 627-640. doi: 10.1016/j.scitotenv.2018.03.023
[7] 梁文萍. 石化企业典型区域VOCs污染特征及来源解析[J]. 现代化工, 2019, 39(9): 5-10.
[8] 盛涛, 高宗江, 高松, 等. 上海市专项化学品制造行业VOCs排放特征及臭氧生成潜势研究[J]. 环境科学研究, 2019, 32(5): 830-838.
[9] 席劲瑛, 胡洪营, 武俊良, 等. 不同行业点源产生VOCs气体的特征分析[J]. 环境科学研究, 2014, 27(2): 134-138.
[10] 邹文君, 修光利, 鲍仙华, 等. 汽车零配件涂装过程VOCs排放特征与案例分析[J]. 环境科学研究, 2019, 32(8): 1358-1364.
[11] WANG R C, YUAN Z B, ZHENG J Y, et al. Characterization of VOC emissions from construction machinery and river ships in the Pearl River Delta of China[J]. Journal of Environmental Sciences, 2020, 96(10): 138-150.
[12] TANG J H, CHU K W, CHAN L Y, et al. Non-methane hydrocarbon emission profiles from printing and electronic industrial processes and its implications on the ambient atmosphere in the Pearl River Delta, South China[J]. Atmospheric Pollution Research, 2013, 5(1): 151-160.
[13] BRAVO D, FERRERO P, PENYA-ROJA J M, et al. Control of VOCs from printing press air emissions by anaerobic bioscrubber: Performance and microbial community of an on-site pilot unit[J]. Journal of Environmental Management, 2017, 197: 287-295.
[14] 赵文峰, 曹利, 黄学敏. 微波制备秸秆活性炭及其对甲苯吸附性能的研究[J]. 环境科学与技术, 2014, 37(10): 108-111.
[15] HSU S H, HUANG C S, CHUNG T W, et al. Adsorption of chlorinated volatile organic compounds using activated carbon made from Jatropha curcas seeds[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(5): 2526-2530. doi: 10.1016/j.jtice.2014.05.028
[16] BEDANE A H, GUO T X, EIC M, et al. Adsorption of volatile organic compounds on peanut shell activated carbon[J]. Canadian Journal of Chemical Engineering, 2019, 97(1): 238-246. doi: 10.1002/cjce.23330
[17] ZHU J, LI Y H, XU L, et al. Removal of toluene from waste gas by adsorption-desorption process using corncob-based activated carbons as adsorbents[J]. Ecotoxicology and Environmental Safety, 2018, 165: 115-125. doi: 10.1016/j.ecoenv.2018.08.105
[18] LI X Q, ZHANG L, YANG Z Q, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review[J]. Separation and Purification Technology, 2020, 235: 116213. doi: 10.1016/j.seppur.2019.116213
[19] 姚炜屹, 王际童, 乔文明, 等. 活性炭纤维孔结构和表面含氧官能团对甲醛吸附性能的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(5): 697-703.
[20] 赵海洋, 卢晗锋, 姜波, 等. 挥发性有机物在活性炭纤维上的吸附和电致热脱附[J]. 中国环境科学, 2016, 36(7): 1981-1987. doi: 10.3969/j.issn.1000-6923.2016.07.011
[21] 周平, 张忠良, 游俊琴, 等. 活性炭纤维织物床层对乙酸乙酯的动态吸附[J]. 新型炭材料, 2019, 34(4): 325-332.
[22] ZHU L, SHEN D, LUO K H, et al. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods[J]. Journal of Hazardous Materials, 2020, 389: 122102. doi: 10.1016/j.jhazmat.2020.122102
[23] KHAN A, SZELEJKO J E, SAMADDAR P, et al. The potential of biochar as sorptive media for removal of hazardous benzene in air[J]. Chemical Engineering Journal, 2019, 361: 1576-1585. doi: 10.1016/j.cej.2018.10.193
[24] CREAMER A E, ZHANG X Y, GAO B, et al. Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms[J]. Bioresource Technology, 2017, 245: 606-614. doi: 10.1016/j.biortech.2017.09.025
[25] 李桥, 雍毅, 丁文川, 等. 紫外辐照改性生物炭对VOCs的动态吸附[J]. 环境科学, 2016, 37(6): 2065-2072.
[26] KOBRA R S, ALIMORAD R, PARVIZ A A, et al. Synthesis of graphene by in situ catalytic chemical vapor deposition of reed as a carbon source for VOC adsorption[J]. Environmental Science and Pollution Research, 2019, 26(4): 3643-3650. doi: 10.1007/s11356-018-3799-8
[27] 王喆. 石墨烯的制备及其对甲苯的吸附性能[J]. 石油化工, 2019, 48(11): 1110-1113. doi: 10.3969/j.issn.1000-8144.2019.11.004
[28] LIM S T, KIM J H, LEE C Y, et al. Mesoporous graphene adsorbents for the removal of toluene and xylene at various concentrations and its reusability[J]. Scientific Reports, 2019, 9(1): 10922. doi: 10.1038/s41598-019-47100-z
[29] YU L, WANG L, XU W C, et al. Adsorption of VOCs on reduced graphene oxide[J]. Journal of Environmental Sciences, 2018, 67(5): 171-178.
[30] CHO H H, SMITH B A, WNUK J D, et al. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes[J]. Environmental Science and Technology, 2008, 42(8): 2899-2905. doi: 10.1021/es702363e
[31] SHIH Y H, LI M S. Adsorption of selected volatile organic vapors on multiwall carbon nanotubes[J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 21-28. doi: 10.1016/j.jhazmat.2007.09.095
[32] BANG J, YOU D W, JANG Y, et al. A carbon nanotube sponge as an adsorbent for vapor preconcentration of aromatic volatile organic compounds[J]. Journal of Chromatography A, 2019, 1605: 460363. doi: 10.1016/j.chroma.2019.460363
[33] 周艺蓉. 碳纳米管对挥发性有机污染物的吸附机理研究[D]. 大连: 大连理工大学, 2012.
[34] DENG H, PAN T T, ZHANG Y, et al. Adsorptive removal of toluene and dichloromethane from humid exhaust on MFI, BEA and FAU zeolites: An experimental and theoretical study[J]. Chemical Engineering Journal, 2020, 394: 124986. doi: 10.1016/j.cej.2020.124986
[35] 薛梦婷, 李勇. VOCs 在分子筛上吸附性能的研究进展[J]. 无机盐工业, 2019, 51(5): 12-16.
[36] 吕双春, 葛云丽, 赵倩, 等. 高硅分子筛的合成及其在VOCs吸附去除领域的应用[J]. 环境化学, 2017, 36(7): 1492-1505. doi: 10.7524/j.issn.0254-6108.2017.07.2016102403
[37] 张媛媛, 王笠力, 何丽, 等. 分子筛改性及其在高湿条件下对甲苯的吸附[J]. 环境工程学报, 2017, 11(10): 5509-5514. doi: 10.12030/j.cjee.201611224
[38] LI R N, XUE T S, LI Z, et al. Hierarchical structure ZSM-5/SBA-15 composite with improved hydrophobicity for adsorption-desorption behavior of toluene[J]. Chemical Engineering Journal, 2020, 392: 124861. doi: 10.1016/j.cej.2020.124861
[39] KIM K H, SZULEJKO J E, RAZA N, et al. Identifying the best materials for the removal of airborne toluene based on performance metrics: A critical review[J]. Journal of Cleaner Production, 2019, 241: 118408. doi: 10.1016/j.jclepro.2019.118408
[40] WANG C P, YIN H, TIAN P J, et al. Remarkable adsorption performance of MOF-199 derived porous carbons for benzene vapor[J]. Environmental Research, 2020, 184: 109323. doi: 10.1016/j.envres.2020.109323
[41] 孙茜. 金属-有机骨架材料MIL-101对典型挥发性有机物(VOCs)的吸附性能及机理[D]. 杭州: 浙江大学, 2011.
[42] 王铭扬, 田凤鸣, 周林, 等. 金属有机骨架材料MIL-53对氯代甲烷的吸附[J]. 功能材料, 2016, 47(5): 5063-5067. doi: 10.3969/j.issn.1001-9731.2016.05.011
[43] 黄思思. 金属-有机骨架材料-MOF-5和MIL-101的合成及其对VOCs的吸附/脱附性能[D]. 广州: 华南理工大学, 2010.
[44] 杨建成, 王诗宁, 杨硕, 等. 金属有机框架材料吸附VOCs影响因素研究进展[J]. 化工进展, 2021, 40(1): 463-476.
[45] 李竞草, 吴冬霞, 常丽萍, 等. 疏水性金属-有机骨架材料的研究进展[J]. 化工进展, 2020, 39(1): 224-232.
[46] 李孟, 李炜, 张帅, 等. MOF及其复合材料吸附去除VOCs应用研究进展[J]. 化工进展, 2021, 40(1): 415-426.
[47] HAN Z W, KONG S L, SUI H, et al. Preparation of carbon-silicon doping composite adsorbent material for removal of VOCs[J]. Materials, 2019, 12(15): 2438. doi: 10.3390/ma12152438
[48] ZHANG G X, FEIZBAKHSHAN M, ZHENG S L, et al. Effects of properties of minerals adsorbents for the adsorption and desorption of volatile organic compounds (VOC)[J]. Applied Clay Science, 2019, 173: 88-96. doi: 10.1016/j.clay.2019.02.022
[49] ZHANG G X, LIU Y Y, ZHENG S L, et al. Adsorption of volatile organic compounds onto natural porous minerals[J]. Journal of Hazardous Materials, 2019, 364: 317-324. doi: 10.1016/j.jhazmat.2018.10.031
[50] SAHIN O, KUTLUAY S, HOROZ S, et al. Fabrication and characterization of 3, 4-diaminobenzophenone -functionalized magnetic nanoadsorbent with enhanced VOC adsorption and desorption capacity[J]. Environmental Science and Pollution Research International, 2021, 28(5): 5231-5253.
[51] YANG P, SONG M, KIM D, et al. Synthesis conditions of porous clay heterostructure (PCH) optimized for volatile organic compounds (VOC) adsorption[J]. Korean Journal of Chemical Engineering, 2019, 36(11): 1806-1813. doi: 10.1007/s11814-019-0369-9
[52] YANG K, SUN Q, XUE F, et al. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: Influence of molecular size and shape[J]. Journal of Hazardous Materials, 2011, 195(15): 124-131.
[53] LI L Q, SUN Z, LI H L, et al. Effects of activated carbon surface properties on the adsorption of volatile organic compounds[J]. Journal of the Air and Waste Management Association, 2012, 62(10): 1196-1202. doi: 10.1080/10962247.2012.700633
[54] 梁鑫. 有机酸改性活性炭及其VOCs吸附行为研究[D]. 长沙: 中南大学, 2014.
[55] 梁欣欣, 卜龙利, 刘嘉栋, 等. 分子筛负载型吸附剂对典型VOCs的吸附行为特性[J]. 环境工程学报, 2016, 10(6): 3152-3160. doi: 10.12030/j.cjee.201501108
[56] PAK S H, JEON M J, JEON Y W. Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal[J]. International Biodeterioration and Biodegradation, 2016, 113: 195-200. doi: 10.1016/j.ibiod.2016.04.019
[57] MENG F Y, SONG M, WEI Y X, et al. The contribution of oxygen-containing functional groups to the gas-phase adsorption of volatile organic compounds with different polarities onto lignin-derived activated carbon fibers[J]. Environmental Science and Pollution Research, 2019, 26(7): 7159-7204.
[58] 刘寒冰, 姜鑫, 王新, 等. PDMS基涂层活性炭对甲苯、苯和丙酮吸附研究[J]. 环境科学, 2016, 37(4): 1287-1294.
[59] 张智, 马修卫, 李津津, 等. 中高温环境下 VOCs 在活性炭上的吸附性能研究[J]. 化工学报, 2019, 70(12): 4811-4820.
[60] 李立清, 宋剑飞, 孙政, 等. 三种VOCs物性对其在活性炭上吸附行为的影响[J]. 化工学报, 2011, 62(10): 2784-2790. doi: 10.3969/j.issn.0438-1157.2011.10.016
[61] 曹利, 黄学敏, 宋文斌, 等. 用修正的E-L模型描述二元VOCs气体在活性炭上的吸附平衡[J]. 环境工程学报, 2011, 5(10): 2326-2330.
[62] XIANG W, ZHANG X Y, CHEN K Q, et al. Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs)[J]. Chemical Engineering Journal, 2020, 385: 123842. doi: 10.1016/j.cej.2019.123842
[63] 张越华. 挥发性有机污染物在活性碳纤维上的吸附行为研究与过程设计[D]. 杭州: 浙江大学, 2018.
[64] 罗瑞, 陈旺, 张进, 等. 碱处理和掺氮耦合改性对活性炭纤维吸附甲醛性能的影响[J]. 环境工程学报, 2018, 12(10): 2791-2796. doi: 10.12030/j.cjee.201804158
[65] 岳旭, 王胜, 高杨, 等. VOCs在吸附剂上吸附性能的热力学研究[J]. 燃料化学学报, 2020, 48(6): 752-760. doi: 10.3969/j.issn.0253-2409.2020.06.015
[66] MA X C, LI L Q, CHEN R F, et al. Porous carbon materials based on biomass for acetone adsorption: Effect of surface chemistry and porous structure[J]. Applied Surface Science, 2018, 459: 657-664. doi: 10.1016/j.apsusc.2018.07.170
[67] 刘纪江, 隋红, 王泽利, 等. 极性VOCs组分在硅胶上的吸脱附性质研究[J]. 现代化工, 2018, 38(12): 181-185.
[68] TANG M H, HUANG X L, PENG Y Q, et al. Hierarchical porous carbon as a highly efficient adsorbent for toluene and benzene[J]. Fuel, 2020, 270: 117478. doi: 10.1016/j.fuel.2020.117478
[69] QIU W J, DOU K, ZHOU Y, et al. Hierarchical pore structure of activated carbon fabricated by CO2/microwave for volatile organic compounds adsorption[J]. Chinese Journal of Chemical Engineering, 2018, 26(1): 81-88. doi: 10.1016/j.cjche.2017.04.006
[70] 刘洋, 白金锋, 李彬, 等. 微孔活性炭对对二甲苯的吸附和脱附性能[J]. 煤炭转化, 2017, 40(1): 53-58. doi: 10.3969/j.issn.1004-4248.2017.01.009
[71] MEKKI A, BOUKOUSSA B. Structural, textural and toluene adsorption properties of microporous-mesoporous zeolite omega synthesized by different methods[J]. Journal of Materials Science, 2019, 54(11): 8096-8107. doi: 10.1007/s10853-019-03450-7
[72] LI L, LIU S Q, LIU J X. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal[J]. Journal of Hazardous Materials, 2011, 192(2): 683-690. doi: 10.1016/j.jhazmat.2011.05.069
[73] DU Y K, CHEN H Y, XU X, et al. Surface modification of biomass derived toluene adsorbent: hierarchically porous characterization and heteroatom doped effect[J]. Microporous and Mesoporous Materials, 2020, 293: 109831. doi: 10.1016/j.micromeso.2019.109831
[74] KIM B, LEE Y R, KIM H Y, et al. Adsorption of volatile organic compounds over MIL-125-NH2[J]. Polyhedron, 2018, 154: 343-349. doi: 10.1016/j.poly.2018.08.010
[75] CHIANG Y C, CHIANG P C, HUANG C P. Effects of pore structure and temperature on VOC adsorption on activated carbon[J]. Carbon, 2001, 39(4): 523-534. doi: 10.1016/S0008-6223(00)00161-5
[76] QIAN Q L, GONG C H, ZHANG Z G, et al. Removal of VOCs by activated carbon microspheres derived from polymer: A comparative study[J]. Adsorption-Journal of the International Adsorption Society, 2015, 21(4): 333-341. doi: 10.1007/s10450-015-9673-9
[77] 余岩松, 吴柳彦, 刘慧娟, 等. 双组分VOCs在吸附树脂上的吸附穿透特性[J]. 中国环境科学, 2020, 40(5): 1982-1990. doi: 10.3969/j.issn.1000-6923.2020.05.015
[78] 龚燕飞. VOCs和水蒸气在活性炭上的吸附平衡研究[D]. 西安: 西安建筑科技大学, 2010.
[79] 贾李娟, 原海燕, 王哲, 等. 汽油油气中典型非极性VOCs的吸附特性及竞争因素[J]. 安全与环境学报, 2020, 20(2): 632-638.
[80] ELWIN H S, TEE J J, PARKIN I P, et al. Adsorption of volatile organic compounds by industrial porous materials: Impact of relative humidity[J]. Microporous and Mesoporous Materials, 2020, 298: 110090. doi: 10.1016/j.micromeso.2020.110090
[81] LI X Q, ZHANG L, YANG Z Q, et al. Hydrophobic modified activated carbon using PDMS for the adsorption of VOCs in humid condition[J]. Separation and Purification Technology, 2020, 239: 116517. doi: 10.1016/j.seppur.2020.116517
[82] 何俊倩, 蒋康, 周瑛, 等. 硅胶表面TEOS疏水化改性及吸附VOCs特性[J]. 中国环境科学, 2020, 40(2): 600-608. doi: 10.3969/j.issn.1000-6923.2020.02.016
[83] BAL'ZHINIMAEV B S, PAUKSHTIS E A, TOKTAREV A V, et al. Effect of water on toluene adsorption over high silica zeolites[J]. Microporous and Mesoporous Materials, 2019, 277: 70-77. doi: 10.1016/j.micromeso.2018.10.023
[84] 冯勇超, 于庆君, 易红宏, 等. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098. doi: 10.11896/cldb.19110003
[85] LEE D G, KIM J H, LEE C H. Adsorption and thermal regeneration of acetone and toluene vapors in dealuminated Y-zeolite bed[J]. Separation and Purification Technology, 2011, 77(3): 312-324. doi: 10.1016/j.seppur.2010.12.022
[86] 左宋林, 张杰, 刘军利, 等. 活性炭上挥发性有机化合物的真空脱附[J]. 林产化学与工业, 2017, 37(6): 19-27. doi: 10.3969/j.issn.0253-2417.2017.06.003
[87] SALVADOR F, MARTIN-SANCHEZ N, SANCHES-HERNANDEZ R, et al. Regeneration of carbonaceous adsorbents. Part I: Thermal regeneration[J]. Microporous and Mesoporous Materials, 2015, 202: 259-276. doi: 10.1016/j.micromeso.2014.02.045
[88] 杨宇轩, 杜昭, 刘倩. 4种分子筛对VOCs静态吸附与脱附性能研究[J]. 应用化工, 2019, 48(12): 2930-2932.
[89] FAYAZ M, SHARIATY P, ATKINSON J D, et al. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon[J]. Environmental Science and Technology, 2015, 49(7): 4536-4542. doi: 10.1021/es505953c
[90] 刘倩, 杜昭, 张美然. 分子筛吸附VOCs与微波脱附性能研究[J]. 河北科技大学学报, 2020, 41(2): 164-171. doi: 10.7535/hbkd.2020yx02006
[91] ZHANG X Y, GAO B, FANG J, et al. Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs)[J]. Chemosphere, 2019, 218: 680-686. doi: 10.1016/j.chemosphere.2018.11.144
[92] 周燕芳. 分子筛VOCs吸附性能及其工业化应用研究[D]. 杭州: 浙江大学, 2019.
[93] ZHU J X, ZHANG P, WANG Y B, et al. Effect of acid activation of palygorskite on their toluene adsorption behaviors[J]. Applied Clay Science, 2018, 159: 60-67. doi: 10.1016/j.clay.2017.07.019
[94] SHAH I K, PRE P, ALAPPAT B J, et al. Effect of thermal regeneration of spent activated carbon on volatile organic compound adsorption performances[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1733-1738. doi: 10.1016/j.jtice.2014.01.006