[1] |
郑志鑫, 陈雪, 罗雪晶, 等. 白洋淀湿地种子植物资源调查分析[J]. 河北大学学报(自然科学版), 2017, 37(4): 440-448.
|
[2] |
孙淑雲, 古小治, 张启超, 等. 水草腐烂引发的黑臭水体应急处置技术研究[J]. 湖泊科学, 2016, 28(3): 485-493. doi: 10.18307/2016.0303
|
[3] |
LELOUP J, LOY A, KNAB N J, et al. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea[J]. Environmental Microbiology, 2007, 9(1): 131-142. doi: 10.1111/j.1462-2920.2006.01122.x
|
[4] |
沈爱春, 徐兆安, 吴东浩. 蓝藻大量堆积、死亡与黑水团形成的关系[J]. 水生态学杂志, 2012, 33(3): 68-72.
|
[5] |
胡红伟, 扶咏梅, 刘盼, 等. 挺水植物残体腐解对白龟湖湿地沉积物理化性质的影响[J]. 河南理工大学学报(自然科学版), 2020, 39(5): 36-42.
|
[6] |
藕翔, 崔康平, 汤海燕, 等. 不同水环境下苦草腐解对水质的影响[J]. 环境科学研究, 2017, 30(10): 1553-1560.
|
[7] |
王霄, 徐素, 詹俊, 等. 农村有机固废两段式好氧协同堆肥效果分析[J]. 环境工程学报, 2021, 15(5): 1708-1715. doi: 10.12030/j.cjee.202012047
|
[8] |
程花, 张红星, 闫晖敏, 等. 沉水植物堆肥可行性研究[J]. 安徽农业科学, 2015, 43(29): 258-259. doi: 10.3969/j.issn.0517-6611.2015.29.087
|
[9] |
王亚, 李子富, 冯瑞, 等. 沉水植物与2种不同辅料混合好氧堆肥[J]. 环境工程学报, 2017, 11(6): 3759-3766. doi: 10.12030/j.cjee.201603143
|
[10] |
陆伟东, 冯焕豪, 钟俊云. 水葫芦与猪粪好氧厌氧交替堆肥特征研究[J]. 韶关学院学报, 2014, 35(4): 46-50.
|
[11] |
王丽芬, 邓辅唐, 孙珮石, 等. 水葫芦渣与污泥混合好氧堆肥试验研究[J]. 资源环境与节能减灾, 2012(1): 117-119.
|
[12] |
王亚梅. 生物炭对猪粪堆肥腐熟度及重金属钝化效果的影响[D]. 阿拉尔: 塔里木大学, 2021.
|
[13] |
徐路魏, 王旭东. 生物质炭对蔬菜废弃物堆肥化过程氮素转化的影响[J]. 农业环境科学学报, 2016, 35(6): 1160-1166. doi: 10.11654/jaes.2016.06.019
|
[14] |
卢妙. 调理剂对污泥堆肥的影响研究[D]. 广州: 华南理工大学, 2018.
|
[15] |
NIGUSSIE A, DUME B, AHMED M, et al. Effect of microbial inoculation on nutrient turnover and lignocellulose degradation during composting: A meta-analysis[J]. Waste Management, 2021, 125: 220-234.
|
[16] |
张秧, 艾为党, 靳向丹, 等. 3种菌剂对小麦秸秆好氧堆肥降解效果比较[J]. 环境工程学报, 2021, 15(2): 709-716. doi: 10.12030/j.cjee.202005132
|
[17] |
席北斗, 李英军, 刘鸿亮, 等. 温度对生活垃圾堆肥效率的影响[J]. 环境污染治理技术与设备, 2005, 6(7): 33-36.
|
[18] |
石文军, 杨朝晖, 肖勇, 等. 全程高温好氧堆肥快速降解城市生活垃圾[J]. 环境科学学报, 2009, 29(10): 2126-2133. doi: 10.3321/j.issn:0253-2468.2009.10.016
|
[19] |
李磊, 王淑琦, 郭小平, 等. 初始粒径和外源添加剂对绿化废弃物堆肥腐熟效果的影响[J]. 环境工程学报, 2020, 14(10): 2804-2812. doi: 10.12030/j.cjee.201911157
|
[20] |
张园, 耿春女, 何承文, 等. 堆肥过程中有机质和微生物群落的动态变化[J]. 生态环境学报, 2011, 20(11): 1745-1752. doi: 10.3969/j.issn.1674-5906.2011.11.028
|
[21] |
中华人民共和国农业部. 水溶肥料腐植酸含量的测定: NY/T 1971-2010[S]. 北京: 中国标准出版社, 2010.
|
[22] |
张建华, 田光明, 姚静华, 等. 不同调理剂对猪粪好氧堆肥效果的影响[J]. 水土保持学报, 2012, 26(3): 131-135.
|
[23] |
CHANG R X, LI Y M, CHEN Q, et al. Comparing the effects of three in situ methods on nitrogen loss control, temperature dynamics and maturity during composting of agricultural wastes with a stage of temperatures over 70 °C[J]. Journal of Environmental Management, 2019, 230: 119-127.
|
[24] |
蒋志伟. 赤泥对堆肥中木质纤维素降解和腐殖质形成及功能微生物群落演替的影响[D]. 南宁: 广西大学, 2020.
|
[25] |
中华人民共和国农业部. 有机肥料: NY 525-2012[S]. 北京: 中国标准出版社, 2012.
|
[26] |
谢胜禹, 余广炜, 潘兰佳, 等. 添加生物炭对猪粪好氧堆肥的影响[J]. 农业环境科学学报, 2019, 38(6): 1365-1372. doi: 10.11654/jaes.2018-1320
|
[27] |
ZHANG J, CHEN G F, SUN H F, et al. Straw biochar hastens organic matter degradation and produces nutrient-rich compost[J]. Bioresource Technology, 2016, 200: 876-883. doi: 10.1016/j.biortech.2015.11.016
|
[28] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
|
[29] |
CHEN X, LIU R, HAO J, et al. Protein and carbohydrate drive microbial responses in diverse ways during different animal manures composting[J]. Bioresource Technology, 2019, 271(9): 482-486.
|
[30] |
XIAO X, XI B D, HE X S, et al. Hydrophobicity-dependent electron transfer capacities of dissolved organic matter derived from chicken manure compost[J]. Chemosphere, 2019, 222: 757-765.
|
[31] |
张凤, 任勇翔, 张海阳, 等. 投加方式和通风速率对脱水污泥堆肥效果的影响[J]. 环境工程学报, 2018, 12(8): 2372-2378. doi: 10.12030/j.cjee.201803070
|
[32] |
MOHARANA P C, BISWAS D R. Assessment of maturity indices of rock phosphate enriched composts using variable crop residues[J]. Bioresource Technology, 2016, 222: 1-13. doi: 10.1016/j.biortech.2016.09.097
|
[33] |
GUO X X, LIU H T, WU S B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions[J]. Science of the Total Environment, 2019, 662: 501-510. doi: 10.1016/j.scitotenv.2019.01.137
|
[34] |
姚武, 顾燕青, 巫阳, 等. 畜粪堆肥过程中腐殖质形成特征研究进展[J]. 杭州师范大学学报(自然科学版), 2014, 13(5): 517-522.
|
[35] |
JURADO M M, SUÁREZ-ESTRELLA F, VARGAS-GARCIA M C, et al. Increasing native microbiota in lignocellulosic waste composting: Effects on process efficiency and final product maturity[J]. Process Biochemistry, 2014, 49(11): 1958-1969. doi: 10.1016/j.procbio.2014.08.003
|
[36] |
REN X, WANG Q, ZHANG Y, et al. Improvement of humification and mechanism of nitrogen transformation during pig manure composting with Black Tourmaline[J]. Bioresource Technology, 2020, 307: 123236. doi: 10.1016/j.biortech.2020.123236
|
[37] |
YANG Y, AWASTHI M K, BAO H, et al. Exploring the microbial mechanisms of organic matter transformation during pig manure composting amended with bean dregs and biochar[J]. Bioresource Technology, 2020, 313: 123647. doi: 10.1016/j.biortech.2020.123647
|
[38] |
WANG K, LI X, HE C, et al. Transformation of dissolved organic matters in swine, cow and chicken manures during composting[J]. Bioresource Technology, 2014, 168(17): 222-228.
|
[39] |
AWASTHI M K, ZHANG Z, WANG Q, et al. New insight with the effects of biochar amendment on bacterial diversity as indicators of biomarkers support the thermophilic phase during sewage sludge composting[J]. Bioresource Technology, 2017, 238: 589-601. doi: 10.1016/j.biortech.2017.04.100
|
[40] |
CHAO F M, PO KIM L O, JIA Q X, et al. Molecular mechanisms underlying lignocellulose degradation and antibiotic resistance genes removal revealed via metagenomics analysis during different agricultural wastes composting[J]. Bioresource Technology, 2020, 314: 123731. doi: 10.1016/j.biortech.2020.123731
|
[41] |
周曾艳, 余高, 陈芬, 等. 添加畜禽粪便对中药渣好氧堆肥发酵特性及纤维素, 木质素降解率的影响[J]. 河南农业科学, 2020, 49(10): 63-69.
|
[42] |
闫美超, 孙宇, 闫非凡, 等. 中药渣堆肥化过程中皂苷变化及腐熟度研究[J]. 延边大学农学学报, 2021, 43(1): 38-44.
|