[1] WANG Y Y, PENG Y Z, PENG C Y, et al. Influence of ORP variation, carbon source and nitrate concentration on denitrifying phosphorus removal by DPB sludge from dephanox process[J]. Water Science and Technology, 2004, 50(10): 153-161. doi: 10.2166/wst.2004.0632
[2] PENG Y Z, GAO C D, WANG S Y, et al. Non-filamentous sludge bulking caused by a deficiency of nitrogen in industrial wastewater treatment[J]. Water Science and Technology, 2003, 47(11): 289-295. doi: 10.2166/wst.2003.0617
[3] JIN D C, WANG P, BAI Z H, et al. Analysis of bacterial community in bulking sludge using culture-dependent andindependent approaches[J]. Journal of Environmental Sciences, 2011, 23(11): 1880-1887. doi: 10.1016/S1001-0742(10)60621-3
[4] ZHANG L, SHEN Z, FANG W K, et al. Composition of bacterial communities in municipal wastewater treatment plant[J]. Science of the Total Environment, 2019, 689: 1181-1191. doi: 10.1016/j.scitotenv.2019.06.432
[5] ZHANG T, SHAO M F, YE L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. The ISME Journal, 2012, 6(6): 1137-1147. doi: 10.1038/ismej.2011.188
[6] YANG C, ZHANG W, LIU R, et al. Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants[J]. Environmental Science & Technology, 2011, 45(17): 7408-7415.
[7] FARKAS M, TANCSICS A, KRISZT B, et al. Zoogloea oleivorans sp. nov. a floc-forming, petroleum hydrocarbon-degrading bacterium isolated from biofilm[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(1): 274-279.
[8] NG K K, SHI X, ONG S L, et al. Pyrosequencing reveals microbial community profile in anaerobic bio-entrapped membrane reactor for pharmaceutical wastewater treatment[J]. Bioresourse Technology, 2016, 200: 1076-1079. doi: 10.1016/j.biortech.2015.10.100
[9] LIM J W, CHEN C L, HO I J, et al. Study of microbial community and biodegradation efficiency for single-and two-phase anaerobic codigestion of brown water and food waste[J]. Bioresourse Technology, 2013, 147(7): 193-201.
[10] SHIGEMATSU T, TANG Y, MIZUNO Y, et al. Microbial diversity of mesophilic methanogenic consortium that can degrade long-chain fatty acids in chemostat cultivation[J]. Journal of Bioscience and Bioengineering, 2006, 102(6): 535-544. doi: 10.1263/jbb.102.535
[11] HERNON F, FORBES C, COLLERAN E. Identification of mesophilic and thermophilic fermentative species in anaerobic granular sludge[J]. Water Science and Technology, 2006, 54(2): 19-24. doi: 10.2166/wst.2006.481
[12] WILSON L P, SHARVELLE S E, DE LONG S K, et al. Enhanced anaerobic digestion performance via combined solids- and leachate-based hydrolysis reactor inoculation[J]. Bioresourse Technology, 2016, 220: 94-103. doi: 10.1016/j.biortech.2016.08.024
[13] SONG Y L, LIU C X, MCTEAGUE M, et al. ‘‘Bacteroides nordii” sp. nov. and “Bacteroides salyersae” sp. nov. isolated from clinical specimens of human intestinal origin[J]. Journal of Clinical Microbiology, 2004, 42(12): 5565-5570. doi: 10.1128/JCM.42.12.5565-5570.2004
[14] RINCON B, PORTILLO M C, GONZALEZ J M. Microbial community dynamics in the two-stage anaerobic digestion process of two-phase olive mill residue[J]. International Journal of Environmental Science and Technology, 2013, 10(4): 635-644. doi: 10.1007/s13762-013-0290-4
[15] RIVIERE D, DESVIGNES V, PELLETIER E, et al. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge[J]. The ISME Journal, 2009, 3(6): 700-714. doi: 10.1038/ismej.2009.2
[16] BERTIN L, BETTINI C, ZANAEOLI G, et al. Acclimation of an anaerobic consortium capable of effective biomethanization of mechanically-sorted organic fraction of municipal solid waste through a semi-continuous enrichment procedure[J]. Journal of Chemical Technology and Biotechnology, 2012, 87(9): 1312-1319. doi: 10.1002/jctb.3809
[17] 王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 2016, 32(2): 14-20.
[18] NELSON M C, MORRISON M, YU Z T. A meta-analysis of the microbial diversity observed in anaerobic digesters[J]. Bioresourse Technology, 2011, 102(4): 3730-3739. doi: 10.1016/j.biortech.2010.11.119
[19] 国家环境保护总局. 水和废水监测分析方法[J]. 4版. 北京:中国环境科学出版社, 2006: 210-280.
[20] ZUO N, JI F Y. The influence of SRT on phosphorus removal and sludge characteristics in the HA-A/A-MCO sludge reduction process[J]. China Water & Wastewater, 2013, 10(2): 025601.
[21] XIONG H, CHEN J, HUI W, et al. Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids[J]. Bioresource Technology, 2012, 119: 285-292.
[22] 贺雪濛, 丁丽丽, 张璐璐, 等. 氮磷失衡下膨胀污泥性能及膨胀菌群落结构变化[J]. 环境科学, 2018, 39(4): 1782-1793.
[23] WANG X, HU M, XIA Y, et al. Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China[J]. Applied and Environmental Microbiology, 2012, 78(19): 7042-7047. doi: 10.1128/AEM.01617-12
[24] ANTUNES T C, MARCONATTO L, BORGES L, et al. Analysis of microbial community biodiversity in activated sludge from a petrochemical plant[J]. Revista Ambiente & Água, 2021, 16(3): 1.
[25] AHRING B K. Perspectives for anaerobic digestion[J]. Advances in Biochemical Engineering/Biotechnology, 2003, 81: 1-30.
[26] TIAN R M, NING D L, HE Z L, et al. Small and mighty: Adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity[J]. Microbiome, 2020, 8(1): 2-15.
[27] HERRMANN M, WEGNER C E, TAUBERT M, et al. Predominance of Cand. patescibacteria in groundwater is caused by their preferential mobilization from soils and flourishing under oligotrophic conditions[J]. Frontiers in microbiology, 2019, 10(15): 1407.
[28] SOWELL S M, WILHELM L J, NORBECK A D, et al. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea[J]. The ISME Journal, 2009, 3(1): 93-105. doi: 10.1038/ismej.2008.83
[29] LIANG B, WANG L Y, MBADINGA S M, et al. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation[J]. AMB Express, 2015, 5(1): 1-13. doi: 10.1186/s13568-014-0092-1
[30] NARIHIRO T, TERADA T, OHASHI A, et al. Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method[J]. Water Research, 2012, 46(7): 2167-2175. doi: 10.1016/j.watres.2012.01.034
[31] YAMADA T, IMACHI H, OHASHI A, et al. Bellilinea caldifistulae gen. nov., sp nov and Longilinea arvoryzae gen. nov., sp nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(10): 2299-2306. doi: 10.1099/ijs.0.65098-0
[32] VIEIRA S, LUCKNER M, WANNER G, et al. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67: 1408-1414. doi: 10.1099/ijsem.0.001827
[33] HUBER K J, WÜST P K, ROHDE M, et al. Aridibacter famidurans gen. nov., sp. nov. and Aridibacter kavangonensis sp. nov., two novel members of subdivision 4 of the Acidobacteria isolated from semiarid savannah soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(6): 1866-1875.
[34] PASCUAL J, WÜST P K, GEPPERT A, et al. Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4[J]. Systematic and Applied Microbiology, 2015, 38(8): 534-544. doi: 10.1016/j.syapm.2015.08.001
[35] IM W T, HU Z Y, KIM K H, et al. Description of Fimbriimonas ginsengisoli gen. nov., sp. nov. within the Fimbriimonadia class nov., of the phylum Armatimonadetes[J]. Antonie Van Leeuwenhoek, 2012, 102(2): 307-317. doi: 10.1007/s10482-012-9739-6
[36] TIAN R, NING D, HE Z, et al. Small and mighty: Adaptation of superphylum patescibacteria to groundwater environment drives their genome simplicity[J]. Microbiome, 2020, 8(1): 51. doi: 10.1186/s40168-020-00825-w
[37] KADNIKOV V V, MARDANOV A V, BELETSKY A V, et al. Complete genome of a member of a new bacterial lineage in the microgenomates group reveals an unusual nucleotide composition disparity between two strands of dna and limited metabolic potential[J]. Microorganisms, 2020, 8(3): 2-15.
[38] CHEN H, LI A, CUI D, et al. Evolution of microbial community and key genera in the formation and stability of aerobic granular sludge under a high organic loading rate[J]. Bioresearch Technology Reports, 2019, 7(1): 100280.
[39] DIAS F F, BHAT J V. Microbial ecology of activated sludge[J]. Applied Microbiology and Biotechnology, 1964, 12(5): 412-417. doi: 10.1128/am.12.5.412-417.1964
[40] MASZENAN A M, SEVIOUR R J, PATEL B K C, et al. Amaricoccus gen. nov., a Gram-negative coccus occurring in regular packages or tetrads, isolated from activated sludge biomass, and descriptions of Amaricoccus veronensis sp. nov., Amaricoccus tamwothensis sp. nov, Amaricoccus macauensis sp. nov., Amaricoccus kaplicensis sp. nov.[J]. International Journal of Systematic Bacteriology, 1997, 47(3): 727-734. doi: 10.1099/00207713-47-3-727
[41] FALVO A, LEVANTESI C, ROSSETTI S, et al. Synthesis of intracellular storage polymers by Amaricoccus kaplicensis, a tetrad forming bacterium present in activated sludge[J]. Journal of Applied Microbiology, 2001, 91(2): 299-305. doi: 10.1046/j.1365-2672.2001.01384.x
[42] MCLLROY S J, SPEIRS L, TUCCI J, et al. In situ profiling of microbial communities in full-scale aerobic sequencing batch reactors treating winery waste in australia[J]. Environmental Science & Technology, 2011, 45(20): 8794-803.
[43] YANG J, DIMITRY YU S, ROBBERT K, et al. Plasticicumulans acidivorans gen. nov., sp. nov., a polyhydroxyalkanoate-accumulating gammaproteobacterium from a sequencing-batch bioreactor[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(9): 2314-2319. doi: 10.1099/ijs.0.021410-0
[44] YANG J, SOROKIN D Y, HELENA J, et al. Plasticicumulans lactativorans sp. nov., a polyhydroxybutyrate-accumulating gammaproteobacterium from a sequencing-batch bioreactor fed with lactate[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt1): 33-38.
[45] 杨宇, 徐爱玲, 张燕飞, 等. 生物合成材料聚β-羟基丁酸(PHB)的研究进展[J]. 生命科学研究, 2006(S3): 61-67.
[46] COATES J D, PHILLIPS E J, LONERGAN D J, et al. Isolation of Geobacter species from a variety of sedimentary environments[J]. Applied and Environmental Microbiology, 1996, 62(5): 1531-1536. doi: 10.1128/aem.62.5.1531-1536.1996
[47] SNOEYENBOS-WEST O L, NEVIN K P, LOVLEY R, et al. Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments[J]. Microbial Ecology, 2000, 39(2): 153-167. doi: 10.1007/s002480000018
[48] LOVLEY D R, BAEDECKER M J, LONERGAN D J, et al. Oxidation of aromatic contaminants coupled to microbial ironreduction[J]. Nature, 1989, 339(6222): 297-300. doi: 10.1038/339297a0
[49] DU Q, MU Q H, CHENG T, et al. Real-time imaging revealed that exoelectrogens from wastewater are selected at the center of a gradient electric field[J]. Environmental Science & Technology, 2018, 52(15): 8939-8946.
[50] LOVLEY D R. Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination[J]. Energy and Environmental Science, 2011, 4(12): 4896-4906. doi: 10.1039/c1ee02229f
[51] ROTARU A E, SHRESTHA P M, LIU F, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy and Environmental Science, 2014, 7(1): 408-415. doi: 10.1039/C3EE42189A
[52] ROTARU A E, SHRESTHA P M, LIU F, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80(15): 4599-4605. doi: 10.1128/AEM.00895-14
[53] 李慧星, 杜风光, 薛刚. 高通量测序研究酒精废水治理中厌氧活性污泥的微生物菌群[J]. 环境科学学报, 2016, 36(11): 4112-4119.
[54] 王学华, 黄俊, 宋吟玲, 等. 高效水解酸化UASB活性污泥的菌群结构分析[J]. 环境科学学报, 2014, 34(11): 2779-2784.
[55] MCILROY S J, KIRKEGAARD R H, DUEHOLM M S, et al. Culture-independent analyses reveal novel anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge[J]. Frontiers in Microbiology, 2017, 8: 1134.
[56] LEMOS L N, MEDEROS J D, DINI-ANDREOTE F, et al. Genomic signatures and co-occurrence patterns of the ultra-small Saccharimonadia (phylum CPR/Patescibacteria) suggest a symbiotic lifestyle[J]. Molecular Ecology, 2019, 28: 4259-4271. doi: 10.1111/mec.15208
[57] KINDAICHI T, YAMAOKA S, UEHARA R, et al. Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge[J]. FEMS Microbiology Ecology, 2016, 92(6): 1-11.
[58] MCINERNEY M J, BRYANT M, HESPELL R, et al. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium[J]. Applied and Environmental Microbiology, 1981, 41(4): 1029-1039. doi: 10.1128/aem.41.4.1029-1039.1981
[59] JACKSON B E, BHUPATHIRAJU V K, TANNER R S, et al. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms[J]. Archives of Microbiology, 1999, 171(2): 107-114. doi: 10.1007/s002030050685