[1] 袁林杰, 袁林江, 陈希, 等. 厌氧氨氧化UASB系统对氨态氮的超量去除机制研究[J]. 中国环境科学, 2021, 41(10): 4686-4694. doi: 10.3969/j.issn.1000-6923.2021.01.001
[2] 左富民, 郑蕊, 隋倩雯, 等. 一体式短程硝化-厌氧氨氧化工艺启动过程的亚硝酸盐调控[J]. 环境科学, 2021, 42(11): 5472-5480.
[3] DENG S Y, PENG Y Z, ZHANG L, et al. Advanced nitrogen removal from municipal wastewater via two-stage partial nitrification-simultaneous anammox and denitrification (PN-SAD) process[J]. Bioresource Technology, 2020, 304: 122955. doi: 10.1016/j.biortech.2020.122955
[4] 樊宇菲, 谢弘超, 周慧, 等. 高氨氮废水半短程硝化控制及曝气经济性运行优化[J]. 环境科学学报, 2021, 41(4): 1275-1282.
[5] 汪涛, 袁路子, 罗正, 等. 短程硝化工艺强化方法研究进展[J]. 工业水处理, 2020, 40(7): 1-5.
[6] XU H, LIU Y. Control of microbial attachment by inhibition of ATP and ATP-mediated autoinducer-2[J]. Biotechnology and Bioengineering, 2010, 107(1): 31-36. doi: 10.1002/bit.22796
[7] ZHANG X, LEE K, YU H, et al. Photolytic quorum quenching: A new anti-biofouling strategy for membrane bioreactors[J]. Chemical Engineering Journal, 2019, 378: 122235. doi: 10.1016/j.cej.2019.122235
[8] LEE K, KIM Y W, LEE S, et al. Stopping autoinducer-2 chatter by means of an indigenous bacterium (Acinetobacter sp DKY-1): A new antibiofouling strategy in a membrane bioreactor for wastewater treatment[J]. Environmental Science & Technology, 2018, 52(11): 6237-6245.
[9] ZHANG S H, YU X, GUO F, et al. Effect of interspecies quorum sensing on the formation of aerobic granular sludge[J]. Water Science and Technology, 2011, 64(6): 1284-1290. doi: 10.2166/wst.2011.723
[10] 吴桂荣. AI-2活化因子(硼)对厌氧氨氧化反应器污泥颗粒化及菌群结构的影响[D]. 广州: 广州大学, 2018.
[11] 苏一魁, 吴桂荣, 荣宏伟, 等. 硼对厌氧氨氧化反应器启动过程及菌群结构的影响[J]. 中国给水排水, 2019, 35(13): 6-10.
[12] SMOLDERS G J, VAN DER MEIJ J, VAN LOOSDRECHT M C, et al. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process[J]. Biotechnology and Bioengineering, 1994, 44(7): 837-848. doi: 10.1002/bit.260440709
[13] 任杰辉, 程文, 万甜, 等. 缓冲液盐度对热提取活性污泥胞外聚合物的影响[J]. 环境科学学报, 2018, 38(8): 3054-3060.
[14] GERHARDT P. Methods for General and Molecular Bacteriology[M]. Washington, D. C. : American Society for Microbiology, 1994.
[15] 胡惠秩. 常/低温下AHLs类群体感应信号分子对SBBR系统影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[16] ZHU L, QI H Y, LV M L, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124: 455-459. doi: 10.1016/j.biortech.2012.08.059
[17] 黄晓遇, 谭炳琰, 李淳峰, 等. 柱前衍生-固相萃取-高效液相色谱荧光测定生物脱氮反应器中痕量信号分子AI-2[J]. 环境工程学报, 2019, 13(1): 109-115. doi: 10.12030/j.cjee.201808042
[18] HU H, HE J, LIU J, et al. Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors[J]. Bioresource Technology, 2016, 211: 339-347. doi: 10.1016/j.biortech.2016.03.068
[19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[20] HE S, ZHANG Y, NIU Q, et al. Operation stability and recovery performance in an anammox EGSB reactor after pH shock[J]. Ecological Engineering, 2016, 90: 50-56. doi: 10.1016/j.ecoleng.2016.01.084
[21] ANTHONISEN A C, LOEHR R C, PRAKASAM T B, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal Water Pollution Control Federation, 1976, 48(5): 835-852.
[22] VADIVELU V M, YUAN Z, FUX C, et al. The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched nitrobacter culture[J]. Environmental Science & Technology, 2006, 40(14): 4442-4448.
[23] CHEN H, LI A, CUI D, et al. N-Acyl-homoserine lactones and autoinducer-2-mediated quorum sensing during wastewater treatment[J]. Applied Microbiology and Biotechnology, 2018, 102(3): 1119-1130. doi: 10.1007/s00253-017-8697-3
[24] JIA F X, YANG Q, LIU X H, et al. Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms[J]. Environmental Science & Technology, 2017, 51(6): 3260-3268.
[25] SHI Y, HUANG J, ZENG G, et al. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview[J]. Chemosphere, 2017, 180: 396-411. doi: 10.1016/j.chemosphere.2017.04.042
[26] SU X Y, ZHANG Z G. Structural characteristics of extracellular polymeric substances (EPS) in membrane bioreactor and their adsorptive fouling[J]. Water Science and Technology, 2018, 77(6): 1537-1546. doi: 10.2166/wst.2018.033
[27] HOU X, LIU S, ZHANG Z. Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge[J]. Water Research, 2015, 75: 51-62. doi: 10.1016/j.watres.2015.02.031
[28] YUAN S J, SUN M, SHENG G P, et al. Identification of key constituents and structure of the extracellular polymeric substances excreted by Bacillus megaterium TF10 for their flocculation capacity[J]. Environmental Science & Technology, 2011, 45(3): 1152-1157.
[29] LV J, WANG Y, ZHONG C, et al. The effect of quorum sensing and extracellular proteins on the microbial attachment of aerobic granular activated sludge[J]. Bioresource Technology, 2014, 152: 53-58. doi: 10.1016/j.biortech.2013.10.097
[30] ZHANG F, YANG H, GUO D, et al. Effects of biomass pyrolysis derived wood vinegar (WVG) on extracellular polymeric substances and performances of activated sludge[J]. Bioresource Technology, 2019, 274: 25-32. doi: 10.1016/j.biortech.2018.11.064
[31] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346. doi: 10.1016/0304-4203(95)00062-3
[32] LIU Y Q, LIU Y, TAY J H. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Applied Microbiology and Biotechnology, 2004, 65(2): 143-148.
[33] ZHENG M, LIU Y C, XIN J, et al. Ultrasonic treatment enhanced ammonia-oxidizing bacterial (AOB) activity for nitritation process[J]. Environmental Science & Technology, 2016, 50(2): 864-871.
[34] XU H, LIU Y. Reduced microbial attachment by D-amino acid-inhibited AI-2 and EPS production[J]. Water Research, 2011, 45(17): 5796-5804. doi: 10.1016/j.watres.2011.08.061
[35] SUN S P, LIU X, MA B Y, et al. The role of autoinducer-2 in aerobic granulation using alternating feed loadings strategy[J]. Bioresource Technology, 2016, 201: 58-64. doi: 10.1016/j.biortech.2015.11.032
[36] ZHAO Z C, XIE G J, LIU B F, et al. A review of quorum sensing improving partial nitritation-anammox process: Functions, mechanisms and prospects[J]. Science of the Total Environment, 2021, 765: 142703. doi: 10.1016/j.scitotenv.2020.142703
[37] SUN Y, GUAN Y, WANG D, et al. Potential roles of acyl homoserine lactone based quorum sensing in sequencing batch nitrifying biofilm reactors with or without the addition of organic carbon[J]. Bioresource Technology, 2018, 259: 136-145. doi: 10.1016/j.biortech.2018.03.025
[38] FENG Z, SUN Y, LI T, et al. Operational pattern affects nitritation, microbial community and quorum sensing in nitrifying wastewater treatment systems[J]. Science of the Total Environment, 2019, 677: 456-465. doi: 10.1016/j.scitotenv.2019.04.371