[1] YANG Y, OK Y S, KIM K H, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review[J]. Science of the Total Environment, 2017, 596-597: 303-320. doi: 10.1016/j.scitotenv.2017.04.102
[2] LV S W, LIU J M, LI C Y, et al. Two novel MOFs@COFs hybrid-based photocatalytic platforms coupling with sulfate radical-involved advanced oxidation processes for enhanced degradation of bisphenol A[J]. Chemosphere, 2020, 243: 125378. doi: 10.1016/j.chemosphere.2019.125378
[3] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. doi: 10.1016/j.cej.2016.10.064
[4] HUANG Y, NENGZI L C, ZHANG X, et al. Catalytic degradation of ciprofloxacin by magnetic CuS/Fe2O3/Mn2O3 nanocomposite activated peroxymonosulfate: Influence factors, degradation pathways and reaction mechanism[J]. Chemical Engineering Journal, 2020, 388: 124274. doi: 10.1016/j.cej.2020.124274
[5] GUO R, WANG Y, LI J, et al. Sulfamethoxazole degradation by visible light assisted peroxymonosulfate process based on nanohybrid manganese dioxide incorporating ferric oxide[J]. Applied Catalysis B:Environmental, 2020, 278: 119297. doi: 10.1016/j.apcatb.2020.119297
[6] GUO R, NENGZI L C, CHEN Y, et al. Construction of high-efficient visible photoelectrocatalytic system for carbamazepine degradation: Kinetics, degradation pathway and mechanism[J]. Chinese Chemical Letters, 2020, 31(10): 2661-2667. doi: 10.1016/j.cclet.2020.03.068
[7] XU H, JIANG N, WANG D, et al. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways[J]. Applied Catalysis B: Environmental, 2020, 263: 118350.
[8] DIKDIM J M D, GONG Y, NOUMI G B, et al. Peroxymonosulfate improved photocatalytic degradation of atrazine by activated carbon/graphitic carbon nitride composite under visible light irradiation[J]. Chemosphere, 2019, 217: 833-842. doi: 10.1016/j.chemosphere.2018.10.177
[9] ZHANG H, NENGZI L C, WANG Z, et al. Construction of Bi2O3/CuNiFe LDHs composite and its enhanced photocatalytic degradation of lomefloxacin with persulfate under simulated sunlight[J]. Journal of Hazardous Materials, 2020, 383: 121236. doi: 10.1016/j.jhazmat.2019.121236
[10] AHMED M M, BRIENZA M, GOETZ V, et al. Solar photo-Fenton using peroxymonosulfate for organic micropollutants removal from domestic wastewater: Comparison with heterogeneous TiO2 photocatalysis[J]. Chemosphere, 2014, 117: 256-261. doi: 10.1016/j.chemosphere.2014.07.046
[11] CHEN X, WANG W, XIAO H, et al. Accelerated TiO2 photocatalytic degradation of acid orange 7 under visible light mediated by peroxymonosulfate[J]. Chemical Engineering Journal, 2012, 193-194: 290-295. doi: 10.1016/j.cej.2012.04.033
[12] ZHANG H, NENGZI L C, LI X, et al. Construction of CuBi2O4/MnO2 composite as Z-scheme photoactivator of peroxymonosulfate for degradation of antibiotics[J]. Chemical Engineering Journal, 2020, 386: 124011. doi: 10.1016/j.cej.2020.124011
[13] LI B, NENGZI L C, GUO R, et al. Novel synthesis of Z-scheme α-Bi2O3/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic performance: Influence of calcination temperature[J]. Chinese Chemical Letters, 2020, 31(10): 2705-2711. doi: 10.1016/j.cclet.2020.04.026
[14] CUI Y, NENGZI L C, GOU J, et al. Fabrication of dual Z-scheme MIL-53(Fe)/α-Bi2O3/g-C3N4 ternary composite with enhanced visible light photocatalytic performance[J]. Separation and Purification Technology, 2020, 232: 115959. doi: 10.1016/j.seppur.2019.115959
[15] LIM J, HOFFMANN M R. Peroxymonosulfate (PMS) activation on cobalt-doped TiO2 nanotubes: degradation of organics under dark and solar light irradiation conditions[J]. Environmental Science-Nano, 2020, 7(5): 1602-1611. doi: 10.1039/D0EN00131G
[16] HUANG J, ZHANG H. Mn-based catalysts for sulfate radical-based advanced oxidation processes: A review[J]. Environmental International, 2019, 133: 105141. doi: 10.1016/j.envint.2019.105141
[17] WEN T, WU X, TAN X, et al. One-pot synthesis of water-swellable Mg-Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(V) from aqueous solutions[J]. ACS Applied Material Interfaces, 2013, 5(8): 3304-3311. doi: 10.1021/am4003556
[18] GUO R, ZHU Y, CHENG X, et al. Efficient degradation of lomefloxacin by Co-Cu-LDH activating peroxymonosulfate process: Optimization, dynamics, degradation pathway and mechanism[J]. Journal of Hazardous Materials, 2020, 399: 122966. doi: 10.1016/j.jhazmat.2020.122966
[19] ZHANG G, ZHANG X, MENG Y, et al. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: A review[J]. Chemical Engineering Journal, 2020, 392: 123684. doi: 10.1016/j.cej.2019.123684
[20] TANG S, WANG Z, YUAN D, et al. Enhanced photocatalytic performance of BiVO4 for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate[J]. International Journal of Electrochemical Science, 2020, 15(3): 2470-2480.
[21] OTGONJARGAL E, KIM Y S, PARK S M, et al. Mn-Fe layered double hydroxides for adsorption of As(III) and As(V)[J]. Separation Science and Technology, 2012, 47(14/15): 2192-2198.
[22] LI S, GUO Y, XIAO M, et al. Enhanced arsenate removal from aqueous solution by Mn-doped MgAl-layered double hydroxides[J]. Environmental Science and Pollution Research International, 2019, 26(12): 12014-12024. doi: 10.1007/s11356-019-04667-4
[23] CHEN Y, HONG H, CAI J, et al. Highly Efficient CO2 to CO transformation over Cu-Based catalyst derived from a CuMgAl‐layered double hydroxide (LDH)[J]. ChemCatChem, 2020, 13(2): 656-663.
[24] WAGNER C D, ZATKO D A, RAYMOND R H. Use of the oxygen KLL auger lines in identification of surface chemical-states by electron-spectroscopy for chemical-analysis[J]. Analytical Chemistry, 1980, 52(9): 1445-1451. doi: 10.1021/ac50059a017
[25] WU L, ZHOU X, WAN G, et al. Novel hierarchical CuNiAl LDH nanotubes with excellent peroxidase-like activity for wide-range detection of glucose[J]. Dalton Transactions, 2021, 50(1): 95-102. doi: 10.1039/D0DT03288C
[26] WANG S, ZHU J, ZHANG S, et al. The catalytic degradation of nitrobenzene by the Cu-Co-Fe-LDH through activated oxygen under ambient conditions[J]. Dalton Transactions, 2020, 49(13): 3999-4011. doi: 10.1039/C9DT03794B
[27] OU B, WANG J, WU Y, et al. Efficient removal of Cr (VI) by magnetic and recyclable calcined CoFe-LDH/g-C3N4 via the synergy of adsorption and photocatalysis under visible light[J]. Chemical Engineering Journal, 2020, 380: 122600. doi: 10.1016/j.cej.2019.122600
[28] UMEZAWA Y, REILLEY C N. Effect of argon ion-bombardment on metal-complexes and oxides studied by X-ray photoelectron-spectroscopy[J]. Analytical Chemistry, 1978, 50(9): 1290-1295. doi: 10.1021/ac50031a025
[29] WU X, FENG Y, LIU X, et al. Redox & acidity optimizing of LDHs-based CoMnAl mixed oxides for enhancing NH3-SCR performance[J]. Applied Surface Science, 2019, 495: 143513. doi: 10.1016/j.apsusc.2019.07.255
[30] LU H, ZHU Z, ZHANG H, et al. Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide[J]. Chemical Engineering Journal, 2015, 276: 365-375. doi: 10.1016/j.cej.2015.04.095
[31] XIE L, ZHONG Y, XIANG R, et al. Sono-assisted preparation of Fe(II)-Al(III) layered double hydroxides and their application for removing uranium (VI)[J]. Chemical Engineering Journal, 2017, 328: 574-584. doi: 10.1016/j.cej.2017.07.051
[32] EL GAINI L, LAKRAIMI M, SEBBAR E, et al. Removal of indigo carmine dye from water to Mg-Al-CO3-calcined layered double hydroxides[J]. Journal of Hazardous Materials, 2009, 161(2/3): 627-632.
[33] ABDELHALEEM A, CHU W. Monuron photodegradation using peroxymonosulfate activated by non-metal-doped TiO2 under visible LED and the modeling via a parallel-serial kinetic approach[J]. Chemical Engineering Journal, 2018, 338: 411-421. doi: 10.1016/j.cej.2018.01.036
[34] 李立, 吴丽颖, 董正玉, 等. 高晶度Mn-Fe LDH催化剂活化过一硫酸盐降解偶氮染料[J]. 环境科学, 2020, 41(6): 10.
[35] WU Y, FANG Z, SHI Y, et al. Activation of peroxymonosulfate by BiOCl@Fe3O4 catalyst for the degradation of atenolol: Kinetics, parameters, products and mechanism[J]. Chemosphere, 2019, 216: 248-257. doi: 10.1016/j.chemosphere.2018.10.012
[36] ZHAN M J, YANG X, XIAN Q M, et al. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances[J]. Chemosphere, 2006, 63(3): 378-386. doi: 10.1016/j.chemosphere.2005.08.046
[37] ALI J, WENLI L, SHAHZAD A, et al. Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: A new strategy to achieve maximum persulfate utilization efficiency[J]. Water Research, 2020, 181: 115862. doi: 10.1016/j.watres.2020.115862
[38] SHAHZAD A, ALI J, IFTHIKAR J, et al. Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides[J]. Journal of Hazardous Materials, 2020, 392: 122316. doi: 10.1016/j.jhazmat.2020.122316
[39] ZHU S, LI X, KANG J, et al. Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants[J]. Environmental Science and Technology, 2019, 53(1): 307-315. doi: 10.1021/acs.est.8b04669
[40] GONG Y, ZHAO X, ZHANG H, et al. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation[J]. Applied Catalysis B:Environmental, 2018, 233: 35-45. doi: 10.1016/j.apcatb.2018.03.077
[41] YANG L, XU L, BAI X, et al. Enhanced visible-light activation of persulfate by Ti3+ self-doped TiO2/graphene nanocomposite for the rapid and efficient degradation of micropollutants in water[J]. Journal of Hazardous Materials, 2019, 365: 107-117. doi: 10.1016/j.jhazmat.2018.10.090
[42] XU Y, LIN Z, ZHANG H. Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H2O2[J]. Chemical Engineering Journal, 2016, 285: 392-401. doi: 10.1016/j.cej.2015.09.091
[43] LEI Y, CHENG S, LUO N, et al. Rate constants and mechanisms of the reactions of Cl· and Cl2·− with trace organic contaminants[J]. Environmental Science and Technology, 2019, 53(19): 11170-11182. doi: 10.1021/acs.est.9b02462
[44] YAN J, LI J, PENG J, et al. Efficient degradation of sulfamethoxazole by the CuO@Al2O3 (EPC) coupled PMS system: Optimization, degradation pathways and toxicity evaluation[J]. Chemical Engineering Journal, 2019, 359: 1097-1110. doi: 10.1016/j.cej.2018.11.074
[45] CHEN H, XU Y, ZHU K, et al. Understanding oxygen-deficient La2CuO4-δ perovskite activated peroxymonosulfate for bisphenol A degradation: The role of localized electron within oxygen vacancy[J]. Applied Catalysis B:Environmental, 2021, 284: 119732. doi: 10.1016/j.apcatb.2020.119732
[46] JAAFARZADEH N, GHANBARI F, AHMADI M. Catalytic degradation of 2, 4-dichlorophenoxyacetic acid (2, 4-D) by nano-Fe2O3 activated peroxymonosulfate: Influential factors and mechanism determination[J]. Chemosphere, 2017, 169: 568-576. doi: 10.1016/j.chemosphere.2016.11.038
[47] YANG S, WANG P, YANG X, et al. Degradation efficiencies of azo dye acid orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 552-558. doi: 10.1016/j.jhazmat.2010.03.039
[48] CHEN P, ZHANG Q, SHEN L, et al. Insights into the synergetic mechanism of a combined vis-RGO/TiO2/peroxodisulfate system for the degradation of PPCPs: Kinetics, environmental factors and products[J]. Chemosphere, 2019, 216: 341-351. doi: 10.1016/j.chemosphere.2018.10.096
[49] XIA D, HE H, LIU H, et al. Persulfate-mediated catalytic and photocatalytic bacterial inactivation by magnetic natural ilmenite[J]. Applied Catalysis B:Environmental, 2018, 238: 70-81. doi: 10.1016/j.apcatb.2018.07.003
[50] GOLSHAN M, KAKAVANDI B, AHMADI M, et al. Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@CuFe2O4) into 2, 4-D degradation: Process feasibility, mechanism and pathway[J]. Journal of Hazardous Materials, 2018, 359: 325-337. doi: 10.1016/j.jhazmat.2018.06.069
[51] TAKDASTAN A, KAKAVANDI B, AZIZI M, et al. Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: A new approach into catalytic degradation of bisphenol A[J]. Chemical Engineering Journal, 2018, 331: 729-743. doi: 10.1016/j.cej.2017.09.021