[1] 郝弟, 张淑荣, 丁爱中, 等. 河流生态系统服务功能研究进展 [J]. 南水北调与水利科技, 2012, 10(1): 106-111. HAO D, ZHANG S R, DING A Z, et al. Research progress on service functions of river ecosystem [J]. South-to-North Water Diversion and Water Science & Technology, 2012, 10(1): 106-111(in Chinese).
[2] 孙徐阳, 李卫明, 粟一帆, 等. 香溪河流域水生态系统健康评价 [J]. 环境科学研究, 2021, 34(3): 599-606. SUN X Y, LI W M, SU Y F, et al. Health assessment of aquatic ecosystem in Xiangxi river basin, China [J]. Research of Environmental Sciences, 2021, 34(3): 599-606(in Chinese).
[3] 王金凤, 武桃丽. 漳河上游径流变化特征及其归因分析 [J]. 干旱区资源与环境, 2019, 33(10): 165-171. WANG J F, WU T L. Analysis on runoff variation characteristics and its attribution in the upper reaches of Zhanghe river basin [J]. Journal of Arid Land Resources and Environment, 2019, 33(10): 165-171(in Chinese).
[4] ZHANG D, LIU X M, LIU C M, et al. Responses of runoff to climatic variation and human activities in the Fenhe River, China [J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(6): 1293-1301. doi: 10.1007/s00477-012-0665-y
[5] LIU X M, LIU C M, LUO Y Z, et al. Dramatic decrease in streamflow from the headwater source in the central route of China's water diversion project: Climatic variation or human influence? [J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D6): D06113.
[6] SIVAKUMAR B. Global climate change and its impacts on water resources planning and management: Assessment and challenges [J]. Stochastic Environmental Research and Risk Assessment, 2011, 25(4): 583-600. doi: 10.1007/s00477-010-0423-y
[7] CHENG H. Future earth and sustainable developments [J]. The Innovation, 2020, 1(3): 100055. doi: 10.1016/j.xinn.2020.100055
[8] CURRY R, DICKSON B, YASHAYAEV I. A change in the freshwater balance of the Atlantic Ocean over the past four decades [J]. Nature, 2003, 426(6968): 826-829. doi: 10.1038/nature02206
[9] ZHANG J Y, WANG W C, WEI J F. Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation [J]. Journal of Geophysical Research Atmospheres, 2008, 113(D17): D17119. doi: 10.1029/2008JD009807
[10] ZHANG R H, ZUO Z Y. Impact of spring soil moisture on surface energy balance and summer monsoon circulation over east Asia and precipitation in East China [J]. Journal of Climate, 2011, 24(13): 3309-3322. doi: 10.1175/2011JCLI4084.1
[11] HUA W J, CHEN H S, ZHU S G, et al. Hotspots of the sensitivity of the land surface hydrological cycle to climate change [J]. Chinese Science Bulletin, 2013, 58(30): 3682-3688. doi: 10.1007/s11434-013-5846-7
[12] 顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011. GU W Z. Isotope hydrology[M]. Beijing: Science Press, 2011(in Chinese).
[13] 郭亚文, 田富强, 胡宏昌, 等. 南小河沟流域地表水和地下水的稳定同位素和水化学特征及其指示意义 [J]. 环境科学, 2020, 41(2): 682-690. GUO Y W, TIAN F Q, HU H C, et al. Characteristics and significance of stable isotopes and hydrochemistry in surface water and groundwater in Nanxiaohegou basin [J]. Environmental Science, 2020, 41(2): 682-690(in Chinese).
[14] 梅亮, 匡星星, 梁四海, 等. 黑河上游葫芦沟流域不同水体稳定同位素特征 [J]. 人民黄河, 2019, 41(11): 30-35,64. doi: 10.3969/j.issn.1000-1379.2019.11.007 MEI L, KUANG X X, LIANG S H, et al. Stable isotope characteristics of different water bodies in the hulugou catchment of the upper Heihe river [J]. Yellow River, 2019, 41(11): 30-35,64(in Chinese). doi: 10.3969/j.issn.1000-1379.2019.11.007
[15] 车存伟, 张明军, 王圣杰, 等. 基于氢氧稳定同位素的兰州市南北两山土壤蒸发时空变化及影响因素研究 [J]. 地理研究, 2020, 39(11): 2537-2551. CHE C W, ZHANG M J, WANG S J, et al. Studying spatio-temporal variation and influencing factors of soil evaporation in southern and northern mountains of Lanzhou city based on stable hydrogen and oxygen isotopes [J]. Geographical Research, 2020, 39(11): 2537-2551(in Chinese).
[16] 刘鑫, 向伟, 司炳成. 汾河流域浅层地下水水化学和氢氧稳定同位素特征及其指示意义 [J]. 环境科学, 2021, 42(4): 1739-1749. LIU X, XIANG W, SI B C. Hydrochemical and isotopic characteristics in the shallow groundwater of the Fenhe river basin and indicative significance [J]. Environmental Science, 2021, 42(4): 1739-1749(in Chinese).
[17] 徐光宇, 柴国平, 徐明德, 等. 主成分分析法在汾河太原城区段水质评价中的应用 [J]. 环境工程, 2014, 32(6): 122-124,113. XU G Y, CHAI G P, XU M D, et al. Application of principal component analysis in water quality evaluation of Fenhe river in Taiyuan city [J]. Environmental Engineering, 2014, 32(6): 122-124,113(in Chinese).
[18] 原志华, 延军平, 刘宇峰. 1950年以来汾河水沙演变规律及影响因素分析 [J]. 地理科学进展, 2008, 27(5): 57-63. doi: 10.11820/dlkxjz.2008.05.008 YUAN Z H, YAN J P, LIU Y F. Analysis of the runoff and sediment development distribution and influencing factor of Fenhe river during the last 50 years [J]. Progress in Geography, 2008, 27(5): 57-63(in Chinese). doi: 10.11820/dlkxjz.2008.05.008
[19] 周莹. 汾河上游水文气象要素演变特征及径流影响因素研究[D]. 太原: 太原理工大学, 2016. ZHOU Y. Variation characteristics of hydrome-teorology elements and influencing forces of runoff in the upper reaches of Fenhe river[D]. Taiyuan: Taiyuan University of Technology, 2016(in Chinese).
[20] 李占元. 宁武—静乐盆地断裂系统及构造演化研究[D]. 北京: 中国石油大学(北京), 2019. LI Z Y. The fault system and tectonic evolution of Ningwu-jingle basin[D]. Beijing: China University of Petroleum (Beijing), 2019(in Chinese).
[21] 宋泽宇. 山西省汾河上游水生态承载力评价 : 以宁武县为例[D]. 北京: 中国地质大学(北京), 2019. SONG Z Y. Assessment of water ecological carrying capacity of upper Fenhe river in Shanxi Province —take Ningwu County as an example[D]. Beijing: China University of Geosciences, 2019(in Chinese).
[22] HOOPER R P, CHRISTOPHERSEN N, PETERS N E. Modelling streamwater chemistry as a mixture of soilwater end-members—An application to the Panola Mountain catchment, Georgia, USA [J]. Journal of Hydrology, 1990, 116(1/2/3/4): 321-343.
[23] TURNER J V, BRADD J M, WAITE T D. Conjunctive use of isotopic techniques to elucidate solute concentration and flow processes in dryland salinized catchments[C]//Isotope techniques in water resources development. Vienna: IAEA, 1992: 33-60.
[24] 马建业, 李占斌, 马波, 等. 黄土区小流域植被类型对沟坡地土壤水分循环的影响 [J]. 生态学报, 2020, 40(8): 2698-2706. MA J Y, LI Z B, MA B, et al. Effects of vegetation types in small watershed on soil water cycle in gully-slope land of loess region [J]. Acta Ecologica Sinica, 2020, 40(8): 2698-2706(in Chinese).
[25] 谷洪彪, 迟宝明, 王贺, 等. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据 [J]. 地球科学进展, 2017, 32(8): 789-799. doi: 10.11867/j.issn.1001-8166.2017.08.0789 GU H B, CHI B M, WANG H, et al. Relationship between surface water and groundwater in the Liujiang basin—hydrochemical constrains [J]. Advances in Earth Science, 2017, 32(8): 789-799(in Chinese). doi: 10.11867/j.issn.1001-8166.2017.08.0789
[26] 胡俊锋, 王金生, 滕彦国. 地下水与河水相互作用的研究进展 [J]. 水文地质工程地质, 2004, 31(1): 108-113. doi: 10.3969/j.issn.1000-3665.2004.01.028 HU J F, WANG J S, TENG Y G. Study progress of interaction between stream and groundwater [J]. Hydrogeology and Engineering Geology, 2004, 31(1): 108-113(in Chinese). doi: 10.3969/j.issn.1000-3665.2004.01.028
[27] 沈贝贝, 吴敬禄, 吉力力·阿不都外力, 等. 巴尔喀什湖流域水化学和同位素空间分布及环境特征 [J]. 环境科学, 2020, 41(1): 173-182. SHEN B B , WU J L, JILILI A et al. Hydrochemical and isotopic characteristics of the lake balkhash catchment, Kazakhstan [J]. Environmental Science, 2020, 41(1): 173-182(in Chinese).
[28] 侯新伟, 李向全, 陈浩. 汾河中游干流河水与大气降水和浅层地下水的转化关系 [J]. 水文地质工程地质, 2008, 35(6): 38-41,49. doi: 10.3969/j.issn.1000-3665.2008.06.009 HOU X W, LI X Q, CHEN H. Study on transforming relationship among surface water, precipitation and groundwater along Fenhe River in Taiyuan Basin [J]. Hydrogeology & Engineering Geology, 2008, 35(6): 38-41,49(in Chinese). doi: 10.3969/j.issn.1000-3665.2008.06.009
[29] KORTATSI B K. Hydrochemical framework of groundwater in the Ankobra Basin, Ghana [J]. Aquatic Geochemistry, 2007, 13(1): 41-74. doi: 10.1007/s10498-006-9006-4
[30] 贾振兴, 臧红飞, 郑秀清, 等. 太原地区大气降雨的氢氧同位素特征研究 [J]. 水资源与水工程学报, 2015, 26(2): 22-25. JIA Z X, ZANG H F, ZHENG X Q, et al. Research on characteristics of hydrogen and oxygen isotopes of precipitation in Taiyuan area [J]. Journal of Water Resources and Water Engineering, 2015, 26(2): 22-25(in Chinese).
[31] 赵佩佩. 中国北方季风地区大气降水稳定同位素特征及影响因子[D]. 西安: 西北大学, 2018. ZHAO P P. Stable isotopic characteristics and influencing factors in precipitation in the monsoon region of Northern China[D]. Xi'an: Northwest University, 2018(in Chinese).
[32] 李文鹏, 郝爱兵, 郑跃军, 等. 塔里木盆地区域地下水环境同位素特征及其意义 [J]. 地学前缘, 2006, 13(1): 191-198. LI W P, HAO A B, ZHENG Y J, et al. Regional environmental isotopic features of groundwater and their hydrogeological explanation in the Tarim Basin [J]. Earth Science Frontiers, 2006, 13(1): 191-198(in Chinese).
[33] 靖淑慧, 刘加珍, 陈永金, 等. 氢氧稳定同位素对东平湖枯水期水环境的指示作用 [J]. 南水北调与水利科技, 2019, 17(1): 120-129,149. JING S H, LIU J Z, CHEN Y J, et al. Indicative function of hydrogen and oxygen stable isotopes on the water environment of Dongping Lake during dry period [J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(1): 120-129,149(in Chinese).
[34] 焦艳军, 王广才, 崔霖峰, 等. 济源盆地地表水和地下水的水化学及氢、氧同位素特征 [J]. 环境化学, 2014, 33(6): 962-968. doi: 10.7524/j.issn.0254-6108.2014.06.023 JIAO Y J, WANG G C, CUI L F, et al. Characteristics of hydrochemistry and stable hydrogen, oxygen isotopes in surface water and groundwater in Jiyuan Basin [J]. Environmental Chemistry, 2014, 33(6): 962-968(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.06.023
[35] 张荷惠子, 于坤霞, 李占斌, 等. 黄土丘陵沟壑区小流域不同水体氢氧同位素特征 [J]. 环境科学, 2019, 40(7): 3030-3038. ZHANG H, YU K X, LI Z B, et al. Characteristics of hydrogen and oxygen isotopes in different water bodies in hilly and gully regions of the loess plateau [J]. Environmental Science, 2019, 40(7): 3030-3038(in Chinese).