[1] VAN LOOSDRECHT M C M, BRDJANOVIC D. Anticipating the next century of wastewater treatment[J]. Science, 2014, 344(6191): 1452 − 1453. doi: 10.1126/science.1255183
[2] ADAV S S, LEE D J, SHOW K Y, et al. Aerobic granular sludge: recent advances[J]. Biotechnology Advances, 2008, 26(5): 411 − 423. doi: 10.1016/j.biotechadv.2008.05.002
[3] NANCHARAIAH Y V, REDDY G K K. Aerobic granular sludge technology: mechanisms of granulation and biotechnological applications[J]. Bioresource Technology, 2018, 247: 1128 − 1143. doi: 10.1016/j.biortech.2017.09.131
[4] HE Q, ZHANG W, ZHANG S, et al. Enhanced nitrogen removal in an aerobic granular sequencing batch reactor performing simultaneous nitrification, endogenous denitrification and phosphorus removal with low superficial gas velocity[J]. Chemical Engineering Journal, 2017, 326: 1223 − 1231. doi: 10.1016/j.cej.2017.06.071
[5] TAY J H, PAN S, HE Y, et al. Effect of organic loading rate on aerobic granulation. II: Characteristics of aerobic granules[J]. Journal of Environmental Engineering, 2004, 130(10): 1102 − 1109. doi: 10.1061/(ASCE)0733-9372(2004)130:10(1102)
[6] HAMZA R A, IORHEMEN O T, ZAGHLOUL M S, et al. Rapid formation and characterization of aerobic granules in pilot-scale sequential batch reactor for high-strength organic wastewater treatment[J]. Journal of Water Process Engineering, 2018, 22: 27 − 33. doi: 10.1016/j.jwpe.2018.01.002
[7] REN Y, FERRAZ F, KANG A J, et al. Treatment of old landfill leachate with high ammonium content using aerobic granular sludge[J]. Journal of Biological Engineering, 2017, 11(1): 42. doi: 10.1186/s13036-017-0085-0
[8] HAMZA R A, SHENG Z, IORHEMEN O T, et al. Impact of food-to-microorganisms ratio on the stability of aerobic granular sludge treating high-strength organic wastewater[J]. Water Research, 2018, 147: 287 − 298. doi: 10.1016/j.watres.2018.09.061
[9] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社. 2002.
[10] 彭永臻, 吴蕾, 马勇, 等. 好氧颗粒污泥的形成机制、特性及应用研究进展[J]. 环境科学, 2010, 31(2): 273 − 281.
[11] LIAO R, LI Y, WANG Z, et al. 454 pyrosequencing analysis on microbial diversity of an expanded granular sludge bed reactor treating high NaCl and nitrate concentration wastewater[J]. Biotechnology and Bioprocess Engineering, 2014, 19(1): 183 − 190. doi: 10.1007/s12257-013-0387-0
[12] ZHU D, TANABE S H, YANG C, et al. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes[J]. PloS ONE, 2013, 8(10): 496 − 501.
[13] LUO J, HAO T, WEI L, et al. Impact of influent COD/N ratio on disintegration of aerobic granular sludge[J]. Water Research, 2014, 62: 127 − 135. doi: 10.1016/j.watres.2014.05.037
[14] HE Q, ZHOU J, WANG H, et al. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor[J]. Bioresource Technology, 2016, 214: 1 − 8. doi: 10.1016/j.biortech.2016.04.088
[15] LUO J, LIANG H, YAN L, et al. Microbial community structures in a closed raw water distribution system biofilm as revealed by 454-pyrosequencing analysis and the effect of microbial biofilm communities on raw water quality[J]. Bioresource Technology, 2013, 148: 189 − 195. doi: 10.1016/j.biortech.2013.08.109
[16] ZHOU Z, QIAO W, XING C, et al. Microbial community structure of anoxic–oxic-settling-anaerobic sludge reduction process revealed by 454-pyrosequencing[J]. Chemical Engineering Journal, 2015, 266: 249 − 257. doi: 10.1016/j.cej.2014.12.095
[17] ZHOU J H, ZHOU Y C, YU H C, et al. Determining the effects of aeration intensity and reactor height to diameter (H/D) ratio on granule stability based on bubble behavior analysis[J]. Environmental Science and Pollution Research, 2019, 26(1): 784 − 796. doi: 10.1007/s11356-018-3666-7
[18] KANG A J, YUAN Q. Long-term stability and nutrient removal efficiency of aerobic granules at low organic loads[J]. Bioresource Technology, 2017, 234: 336 − 342. doi: 10.1016/j.biortech.2017.03.057
[19] JIAO S, CHEN W, WANG E, et al. Microbial succession in response to pollutants in batch-enrichment culture[J]. Scientific Reports, 2016, 6: 21791. doi: 10.1038/srep21791
[20] MILLER M B, Bassler B L. Quorum sensing in bacteria[J]. Annual Reviews in Microbiology, 2001, 55(1): 165 − 199. doi: 10.1146/annurev.micro.55.1.165
[21] DU S, YU D, ZHAO J, et al. Achieving deep-level nutrient removal via combined denitrifying phosphorus removal and simultaneous partial nitrification-endogenous denitrification process in a single-sludge sequencing batch reactor[J]. Bioresource Technology, 2019, 289: 121690. doi: 10.1016/j.biortech.2019.121690
[22] SZABÓ E, LIÉBANA R, HERMANSSON M, et al. Microbial population dynamics and ecosystem functions of anoxic/aerobic granular sludge in sequencing batch reactors operated at different organic loading rates[J]. Frontiers in Microbiology, 2017, 8: 770. doi: 10.3389/fmicb.2017.00770
[23] RAMOS C, SUÁREZ-OJEDA M E, CARRERA J. Long-term impact of salinity on the performance and microbial population of an aerobic granular reactor treating a high-strength aromatic wastewater[J]. Bioresource Technology, 2015, 198: 844 − 851. doi: 10.1016/j.biortech.2015.09.084
[24] WANG H, SONG Q, WANG J, et al. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen: effects of carbon to nitrogen ratios[J]. Science of the Total Environment, 2018, 642: 1145 − 1152. doi: 10.1016/j.scitotenv.2018.06.081
[25] HE Q, CHEN L, ZHANG S, et al. Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N) municipal wastewater treatment[J]. Bioresource Technology, 2019, 271: 48 − 58. doi: 10.1016/j.biortech.2018.09.102