[1] 韩亚鑫. 人工快渗污水处理工艺调研及问题研究[D]. 重庆: 重庆交通大学, 2016.
[2] SU C Y, HUANG Z, CHEN M L, et al. Effects of infiltrator structure and hydraulic loading rates on pollutant removal efficiency and microbial community in a modified two-stage constructed rapid infiltration systems treating swine wastewater[J]. Environmental Progress & Sustainable Energy, 2019, 38(6): 1-7.
[3] 陈佼, 陆一新, 汪锐, 等. 基质含量对人工快渗滤池厌氧氨氧化脱氮的影响[J]. 水处理技术, 2019, 45(7): 101-106.
[4] 陈佼. 人工快渗系统PN-ANAMMOX耦合脱氮性能及机理研究[D]. 成都: 西南交通大学, 2018.
[5] WINKLER M K H, STRAKA L. New directions in biological nitrogen removal and recovery from wastewater[J]. Current Opinion in Biotechnology, 2019, 57: 50-55. doi: 10.1016/j.copbio.2018.12.007
[6] WEN D, VALENCIA A, ORDONEZ D, et al. Comparative nitrogen removal via microbial ecology between soil and green sorption media in a rapid infiltration basin for co-disposal of stormwater and wastewater[J]. Environmental Research, 2020, 184: 109338. doi: 10.1016/j.envres.2020.109338
[7] GONG Q, WANG B, GONG X, et al. Anammox bacteria enrich naturally in suspended sludge system during partial nitrification of domestic sewage and contribute to nitrogen removal[J]. Science of the Total Environment, 2021, 787: 147658. doi: 10.1016/j.scitotenv.2021.147658
[8] SU C Y, ZHU X W, SHI X W, et al. Removal efficiency and pathways of phosphorus from wastewater in a modified constructed rapid infiltration system[J]. Journal of Cleaner Production, 2020, 267: 122063. doi: 10.1016/j.jclepro.2020.122063
[9] 赵伟华, 李健伟, 王梅香, 等. 前置A2NSBR系统硝化和反硝化除磷的特性[J]. 中国环境科学, 2019, 39(11): 4660-4665. doi: 10.3969/j.issn.1000-6923.2019.11.022
[10] ZENG W, LI B X, WANG X D, et al. Integration of denitrifying phosphorus removal via nitrite pathway, simultaneous nitritation-denitritation and anammox treating carbon-limited municipal sewage[J]. Bioresource Technology, 2014, 172: 356-364. doi: 10.1016/j.biortech.2014.09.061
[11] XU X, QIU L, WANG C, et al. Achieving mainstream nitrogen and phosphorus removal through simultaneous partial nitrification, anammox, denitrification, and denitrifying phosphorus removal (SNADPR) process in a single-tank integrative reactor[J]. Bioresource Technology, 2019, 284: 80-89. doi: 10.1016/j.biortech.2019.03.109
[12] 靳慧征, 王振, 丁亚男. 排水速率对潮汐流人工湿地中CANON作用的强化[J]. 中国环境科学, 2018, 38(6): 2182-2192. doi: 10.3969/j.issn.1000-6923.2018.06.021
[13] 王振, 齐冉, 李莹莹, 等. 潮汐流人工湿地中生物蓄磷的强化及其稳定性[J]. 中国环境科学, 2017, 37(2): 534-542. doi: 10.3969/j.issn.1000-6923.2017.02.017
[14] 国家环境保护总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002: 227-285.
[15] 高瑶远, 彭永臻, 包鹏, 等. 低溶解氧环境下全程硝化活性污泥的特性[J]. 中国环境科学, 2017, 37(5): 1769-1774. doi: 10.3969/j.issn.1000-6923.2017.05.020
[16] 宋成康, 王亚宜, 韩海成, 等. 温度降低对厌氧氨氧化脱氮效能及污泥胞外聚合物的影响[J]. 中国环境科学, 2016, 36(7): 2006-2013. doi: 10.3969/j.issn.1000-6923.2016.07.015
[17] OEHMEN A, KELLER-LEHMANN B, ZENG R J, et al. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1): 131-136.
[18] LIN Z Y, WANG Y M, HUANG W, et al. Single-stage denitrifying phosphorus removal biofilter utilizing intracellular carbon source for advanced nutrient removal and phosphorus recovery[J]. Bioresource Technology, 2019, 277: 27-36. doi: 10.1016/j.biortech.2019.01.025
[19] 国家环境保护总局. 土壤农化分析[M]. 北京: 中国环境科学出版社, 1986: 66-70.
[20] 时霞. 基于微氧调控的建筑废料垂直流人工湿地中氮磷迁移转化研究[D]. 济南: 山东大学, 2018.
[21] 刘冰, 郑煜铭, 李清飞, 等. 复合人工湿地中反硝化除磷作用的发生及其稳定性[J]. 环境科学, 2019, 40(12): 5401-5410.
[22] 王振, 刘超翔, 董健, 等. 人工湿地中除磷填料的筛选及其除磷能力[J]. 中国环境科学, 2013, 33(2): 227-233. doi: 10.3969/j.issn.1000-6923.2013.02.006
[23] NIELSEN M, BOLLMANN A, SLIEKERS O, et al. Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor[J]. FEMS Microbiology Ecology, 2005, 51(2): 247-256. doi: 10.1016/j.femsec.2004.09.003
[24] 闫媛, 黎力, 王亚宜, 等. 采用高通量测序分析全程自养脱氮(CANON)系统不同脱氮效能下的微生物群落结构[J]. 北京工业大学学报, 2015, 41(10): 1485-1492.
[25] BAGCHI S, BISWAS R, NANDY T. Autotrophic ammonia removal processes: Ecology to technology[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(13): 1353-1418. doi: 10.1080/10643389.2011.556885
[26] HU B, ZHENG P, TANG C, et al. Identification and quantification of anammox bacteria in eight nitrogen removal reactors[J]. Water Research, 2010, 44(17): 5014-5020. doi: 10.1016/j.watres.2010.07.021
[27] GONZALEZ-MARTINEZ A, RODRIGUEZ-SANCHEZ A, GARCIA-RUIZ M J, et al. Performance and bacterial community dynamics of a CANON bioreactor acclimated from high to low operational temperatures[J]. Chemical Engineering Journal, 2016, 287: 557-567. doi: 10.1016/j.cej.2015.11.081
[28] 韩文杰, 吴迪, 周家中, 等. CANON生物膜载体储存及活性恢复研究[J]. 中国环境科学, 2020, 40(5): 2062-2072. doi: 10.3969/j.issn.1000-6923.2020.05.024
[29] YUAN Y, LIU J, MA B, et al. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR)[J]. Bioresource Technology, 2016, 222: 326-334. doi: 10.1016/j.biortech.2016.09.103
[30] HUANG Y. Detection of polyhydroxyalkanoate-accumulating bacteria from domestic wastewater treatment plant using highly sensitive PCR primers[J]. Journal of Microbiology and Biotechnology, 2012, 22(8): 1141-1147. doi: 10.4014/jmb.1111.11040
[31] FIGDORE B A, STENSEL H D, WINKLER M H. Comparison of different aerobic granular sludge types for activated sludge nitrification bioaugmentation potential[J]. Bioresource Technology, 2018, 251: 189-196. doi: 10.1016/j.biortech.2017.11.004
[32] LIU H, WANG Q, SUN Y, et al. Isolation of a non-fermentative bacterium, Pseudomonas aeruginosa, using intracellular carbon for denitrification and phosphorus-accumulation and relevant metabolic mechanisms[J]. Bioresource Technology, 2016, 211: 6-15. doi: 10.1016/j.biortech.2016.03.051
[33] WANG L, LIU J, OEHMEN A, et al. Butyrate can support PAOs but not GAOs in tropical climates[J]. Water Research, 2021, 193: 116884. doi: 10.1016/j.watres.2021.116884
[34] BI Z, TAKEKAWA M, PARK G, et al. Effects of the C/N ratio and bacterial populations on nitrogen removal in the simultaneous anammox and heterotrophic denitrification process: Mathematic modeling and batch experiments[J]. Chemical Engineering Journal, 2015, 280: 606-613. doi: 10.1016/j.cej.2015.06.028
[35] WANG D, WANG G W, YANG F L, et al. Treatment of municipal sewage with low carbon-to-nitrogen ratio via simultaneous partial nitrification, anaerobic ammonia oxidation, and denitrification (SNAD) in a non-woven rotating biological contactor[J]. Chemosphere, 2018, 208: 854-861. doi: 10.1016/j.chemosphere.2018.06.061
[36] ZHENG X, SUN P, HAN J, et al. Inhibitory factors affecting the process of enhanced biological phosphorus removal (EBPR): A mini-review[J]. Process Biochemistry, 2014, 49(12): 2207-2213. doi: 10.1016/j.procbio.2014.10.008
[37] 汪文飞, 王若凡, 王煜钧, 等. 潜流湿地填料比选及对氨氮的去除效应研究[J]. 环境污染与防治, 2020, 42(7): 864-868.
[38] 邱林远. SNADPR工艺脱氮除磷性能及其微生物群落研究[D]. 大连: 大连理工大学, 2019: 15-16.
[39] ZHANG M J, QIAO S, SHAO D H, et al. Simultaneous nitrogen and phosphorus removal by combined anammox and denitrifying phosphorus removal process[J]. Journal of Chemical Technology and Biotechnology, 2018, 93(1): 94-104. doi: 10.1002/jctb.5326
[40] HE Q, SONG Q, ZHANG S, et al. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources: Reactor performance, extracellular polymeric substances and microbial successions[J]. Chemical Engineering Journal, 2018, 331: 841-849. doi: 10.1016/j.cej.2017.09.060